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1.TECHNICAL SUMMARY 

The goal of SRI's consistency modeling project is to improve the raw acoustic modeling 

component of SRI's DECIPHER1 speech recognition system and develop consistency modeling 
technology. Consistency modeling aims to reduce the number of improper independence 
assumptions used in traditional speech recognition algorithms so that the resulting speech 
recognition hypotheses are more self-consistent and, therefore, more accurate. 

At the initial stages of this effort, SRI focused on developing the appropriate base 
technologies for consistency modeling. We first developed the Progressive Search technology that 
allowed us to perform large-vocabulary continuous speech recognition (LVCSR) experiments. 
Since its conception and development at SRI, this technique has been adopted by most 
laboratories, including other ARPA contracting sites, doing research on LVSR. 

With an efficient solution for the recognition search problem, we were then able to attack 
the acoustic modeling problem. An initial attempt to remove independence assumptions from 
discrete-density hidden Markov model (HMM) based speech recognizers and model 
dependencies at the intra-segmental level did not provide us with any improvement in accuracy, 
because of the large number of parameters that it required. To overcome this problem, we 
developed the genonic HMM technology that dramatically reduced the error rate of our speech 
recognizer and served as a basis for the technology developed in the remainder of the project. The 
genonic HMM technology was also adopted by other major ARPA contractors in the recent 1994 
CSR ARPA benchmarks. 

Another goal of the consistency modeling project is to attack difficult modeling problems, 
when there is a mismatch between the training and testing phases. Such mismatches may include 
outlier speakers, different microphones and additive noise. We were able to either develop new, or 
transfer and evaluate existing, technologies that adapted our baseline genonic HMM recognizer to 
such difficult conditions. These included 

• The joint development with ARPA-funded SRI project 4668 of a new speaker- 
adaptation technique that adapts to the new speaker with only a few minutes of speech. 
This technique was evaluated in the recent 1994 ARPA benchmarks and can reduce 
the error rate of nonnative speakers by a factor of 2 to 4 with only five minutes of 
adaptation speech. 

• The transfer of the probabilistic optimum filtering (POF) technique developed under 
NSF funding for microphone and channel independence. The technique was evaluated 
in the 1993 ARPA benchmarks, where we demonstrated that the recognition 
performance does not degrade when mismatched microphone types are used in the 
training and testing phases. 

1. DECIPHER is a trademark of SRI International. 



•    The joint development with NSF-funded SRI project 2764 of a technique for 
recognition in additive noise, which combines the adaptation and POF techniques. The 
method was evaluated in the recent 1994 ARPA benchmarks, where we found that the 
error rate, during recognition in additive noise, increases by a factor of 1.6 to 4.9, 
depending on the signal-to-noise (SNR) ratio. Application of our technique 
significantly reduces the error rate, and the corresponding increases in error rate after 
compensation are only 1.2 and 1.8. 

SRI emphasizes the development of technology that can be easily transferred into 
applications. Our genonic HMMs, although very accurate, were significantly more expensive 
computationally than our previous discrete-HMM technology. In parallel with our work on 
developing consistency-modeling techniques, a significant effort was undertaken during the 
second year of the project toward the development of an accurate real-time LVCSR dictation 
system. To achieve this goal, a number of new techniques were developed, and a real-time system 
that compromised very little accuracy was recently demonstrated to ARPA personnel. 

In addition to difficult modeling problems, we have also investigated global consistency 
modeling, where we try to model dependencies in the speech signal on a scale that is longer than 
the phone-segment level. We have recently started applying our successful speaker-adaptation 
techniques to this problem, and we have some preliminary encouraging results. This is an ongoing 
research effort, and is currently being supported by ARPA-funded SRI project 6429. 

Section 2 summarizes the progress made during the project. Papers describing our various 
techniques are included in the appendix, and are briefly summarized in Section 3. 



2. SUMMARY OF PROGRESS 

All of our work toward improving the word accuracy of speech recognition systems is 
evaluated at the yearly ARPA CSR benchmark exercises. The results of these evaluations are 
summarized in Figure 1 for SRI and three other major ARPA contracting sites. We have plotted 
the word recognition error rates of each of the four systems for the 1992,1993, and 1994 'hub' 
tests. Since the consistency modeling project is primarily focused on acoustic modeling, we 
present the results for the test conditions that evaluate acoustic modeling technology only and 
have fixed language modeling and training data across different systems. The results across 
different years are not comparable, since the tasks and the test sets are different, and the word 
error rates for year 1992 are plotted for all four sites using twice their actual values. We have 
chosen to do so solely for display purposes, since the task in 1992 was a 5,000-word dictation 
task, as opposed to the 20,000-word tasks used in the subsequent years, and it has been 
empirically found that the 5,000-word error rates are roughly half the 20,000-word ones. 
Moreover, the results for the November 1994 evaluation are unofficial, since the official National 
Institute of Standards and Technology (NIST) results were unavailable when this report was 
written. We can see from this figure the improvement in SRI's performance relative to other sites 
during the course of the consistency modeling project At the beginning of the project, SRI's 
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Figure 1. Word-recognition error rate reduction for various ARPA contractors since 1992. 



system had twice the error rate of the best-performing system. After two years of project work, 
and using techniques that were developed in this project and are summarized in the following 
discussions, SRI's system was one of the best-performing ARPA systems in the 1994 
benchmarks. 



3. DETAILS OF TECHNICAL DEVELOPMENTS 

A number of techniques were either developed or transferred and evaluated using 
consistency modeling project funding. 

3.1       PROGRESSIVE SEARCH TECHNOLOGY 

A technique called Progressive Search, developed early in the project, allows recognition 
experiments to be run over several hundred sentences in a few hours instead of a day or more. 
Progressive Search is a multiple-pass technique, with each pass using a progressively more 
accurate (and costly) algorithm. Each pass outputs a grammar (word lattice) used to constrain the 
next pass's search space (instead of a less efficient N-best sentence list). It allows evaluation of 
computationally demanding algorithms (N-grams, more complex HMMs). It also facilitates 
developing real-time, high-accuracy, large-vocabulary recognition. 

A Progressive Search technique has been applied to a standard cross-word tied-mixture 
5K bigram HMM recognizer for ARPA's Wall Street Journal (WSJ) dictation task. It improved 
recognition development time by an order of magnitude (from 46 x real time to 5.6 x real time) 
when precomputed first-pass lattices were stored. 

Another important application of the Progressive Search technique has been for trigram 
language models. In this case, the word lattice output by an initial bigram-based recognizer was 
converted into a trigram word lattice by replicating those states in the lattice where trigram word 
transition probabilities existed. This approach to trigram language modeling increased decoding 
time only slightly from that of bigram modeling (15% increase), with a minimal increase to the 
grammar size (since most of the trigrams were not represented). This approach is much more 
powerful than using an N-best approach to implementing N-gram language models since more of 
the correct words exist in the lattice than the top N sentences. For instance, in an experiment using 
bigram language models for 5,000-word WSJ speech recognition, a system that achieved 
approximately a 10% word error rate2 on our development set achieved only an approximately 
5% N-best error rate3 for N = 1000, whereas the relatively compact grammar generated by this 
system had a 1% lattice error rate.4 This reduced error rate gives the language model the 
opportunity to repair errors that the N-best system could not overcome. A paper describing this 
technique is included in the appendix. 

2. A10% bigram error on our development set is roughly equivalent to a 1% word error using bigrams on 
the official November 1992 evaluation set, approximately the same as the best bigram-based performance 
reported at the January 1993 ARPA meeting. 
3. The N-best word error rate is defined as the average error of the best of the N sentence hypotheses. 
4. The lattice error rate is the average of the error rate associated with the best path through the lattices. 



3.2      GENONE-BASED HMM TECHNOLOGY 

SRI has developed a new type of HMM speech recognition technique called genonic 
mixtures. A genone is a Gaussian codebook used in Gaussian mixture-density HMMs. In this type 
of system, Gaussian mixture components are shared among groups of states. These groupings are 
automatically determined using agglomerative clustering techniques. This technique 
automatically balances the modeling resolution/robustness trade-off, depending on the amount of 
training data. 

We evaluated SRI's DECIPHER technology that existed at the start of this project in 
ARPA's November 1992 evaluation on the 5,000-word test. This technology was a tied-mixture 
HMM using SRI's phone set and a combination of SRI's and Dragon's5 WSJ pronunciation 
dictionaries. We achieved a 13% error rate. After improving our system between then and June 
1993 and using regular progress checks with other development materials (using different 
speakers than in the November 1992 test set) we reevaluated our speech recognition system on the 
November 1992 test set6. Table 1 shows that improvements made on the choice of phonetic units, 

System Word Error (%) Sentence Error (%) 

SRI, November 1992 13.0 73.9 

PTM + cepstral mean removal 
+ phone set + dictionary 

9.0 60.6 

Genones + above improvements 7.7 53.0 

Table 1. Speech recognition accuracy improvement 

the dictionary (supplied by the LIMSI laboratory), a cepstral mean removal front end, and, in 
particular, the use of phonetically tied mixtures (PTM — see appendix) reduced our error rate by 
31%7. An additional 14% reduction was achieved by the introduction of genone technology, 
making the overall improvement 41% . 

The difference in recognition performance between PTM and genonic HMMs was, 
however, much more dramatic in the WSJ1 portion of the database. There, the training data 
consisted of 37,000 sentences from 280 speakers, and gender-dependent models were built. The 
male subset of the 20,000-word, November 1992 evaluation set was used, with a bigram language 
model. Table 2 compares various degrees of tying by varying the number of genones used in the 

5. All product and company names mentioned in this document are the trademarks of their respective 
holders. 
6. The November 1992 test set was used only twice, once in November 1992 and once in June 1993. The 
particular errors made in November 1992 were not examined; thus, we consider this second test to be a 
relatively fair evaluation of the progress we made during that period. 
7. Our development data experiments suggest that about one half of the 31% improvement is due to PTM. 
8. An error rate reduction of 25% was due solely to genone technology. 



system. We can see that, because of the larger amount of available training data, the improvement 
in performance of genonic systems over PTM systems is much larger (20%) than in our 5,000- 
word experiments. Moreover, the best performance is achieved for a larger number of genones— 
1,700 instead of the 495 used in the 5,000-word experiments. A paper describing this technique is 
included in the appendix. 

PTM Genonic HMMs 

Number of Genones 40 760 1250 1700 2400 

Word error rate (%) 14.7 12.3 11.8 11.4 12.0 

Table 2. Recognition performance on the male subset of the 20,000-word WSJ November 1992 ARPA 
evaluation set for various numbers of codebooks using a bigram language model 

3.3      LOCAL CONSISTENCY MODELING 

Local consistency modeling attempts to remove the independence assumption of nearby 
frames, but not frames across the entire input sentence. The spectral input to the HMM system at 
neighboring frames is highly correlated because (1) the speech signal is sampled faster (every 10 
ms) than the vocal tract changes, and (2) the spectral analysis between neighboring frames uses 
overlapping windows (25.6 ms). Therefore, the HMM independence assumption is clearly 
violated, and recognition performance could improve by modifying the HMM model to capture 
this correlation between neighboring frames. In addition, sources of variability such as 
microphone, vocal tract shape, speaker dialect and speech rate will not dominate the likelihood 
computation during Viterbi decoding by being rescored at every frame. 

3.3.1    Discrete Density HMMs 

The time correlation can be modeled by replacing the standard output distribution/?^ I s) 
of the observed spectral feature *, given the HMM state s with a model that can account for the 
previous acoustic history/>(*, I Hp s), where Ht is the summary of the previous acoustic input. A 
straightforward implementation is to represent the summary of the previous acoustics Htbyxt.j: 
the current frame is highly correlated with the previous acoustic frame, and although prediction of 
the current frame using a longer history and spectral dynamics is theoretically better, a good first- 
order approximation that uses only the last observation may be sufficient. This approach does not 
introduce any significant problems in an HMM-based recognizer, since the output-independence 
assumption is not necessary for the development of the HMM recognition (Viterbi) and training 
(Baum-Welch) algorithms. Both of these algorithms can be modified to cover the case when the 
features depend not only on the current HMM state, but also on features at previous frames 
[Wellekens87]. 

In a discrete density system, we can use the state conditional output probabilities 
p(qt\qt_1,s)  where qt is the vector-quantized speech signal at time t. In a typical large- 
vocabulary speech recognizer such modeling would require the estimation of a very large number 



of parameters ((number of states = 10,000) x (codebook size=256)2 = 650 million parameters per 
feature). To reduce the number of parameters, we made certain simplifying assumptions that 
reduced the number of parameters that need to be estimated to 12 million parameters per feature, 
and we then tested this approach on one of our WSJ development test sets. The results are 
summarized in Table 3. 

Word Error for System Standard Recognizer 
Recognizer with Co-Occurrence 

Local Consistency 

Context-Independent Models 46.2 41.8 

Context-Dependent Models 20.7 22.0 

Table 3. Word error for WSJ male 5,000-word closed verbalized punctuation development test 

While the context-independent model results improved, the context-dependent model 
performance decreased. We attributed this result to the large number of parameters that needed to 
be estimated. The number of parameters increases proportionately with the square of the 
codebook size. It is, therefore, essential to decrease the codebook size, and this can be achieved 
by using continuous-density genonic HMM systems. 

3.3.2   Continuous-Density HMMs 

To overcome the parameter-estimation problem associated with modeling correlations 
using discrete-density HMMs, we focused on modeling time correlation using the continuous- 
density genonic HMMs described in Section 3.2. With the exception of the work reported in 
[Digalakis93] that was based on segment models, explicit time-correlation modeling has not 
improved the performance of HMM-based speech recognizers [Brown87, Kenny90]. To 
investigate these results, SRI conducted a study to estimate the potential improvement in 
recognition performance when using explicit correlation modeling over more traditional methods 
like time-derivative information. We used information-theoretic criteria and measured the amount 
of mutual information between the current HMM state and the cepstral coefficients at a previous 
"history" frame. The mutual information was always conditioned on the identity of the left phone, 
and was measured under three different conditions: 

.    /(7i,.s)—unconditional mutual information between the current HMM state and a 
cepstral coefficient at the history frame; a single, left-context-dependent Gaussian 
distribution for the cepstral coefficient at the history frame was hypothesized. 

• I(h,s\ c)—conditional mutual information between the current HMM state and a 
cepstral coefficient at the history frame when the same cepstral coefficient of the 
current frame is given; a left-context-dependent, joint Gaussian distribution for the 
cepstral coefficients at the current and the history frames was hypothesized. 

• I(h,s\c,d)—the same as explained above, but conditioned on both the cepstral 
coefficient and its corresponding derivative at the current frame. 



The results are summarized in Table 4 for history frames with lags of 1,2,4 and a variable 
one. In the latter case, we condition the mutual information on features extracted at the last frame 
of the previous HMM state, as located by a forced Viterbi alignment. We can see from this table 
that in the unconditional case, the cepstral coefficients at frames closer to the current one provide 
more information about the identity of the current phone. However, the amount of additional 
information that these coefficients provide when the knowledge of the current cepstra and their 
derivatives is taken into account is smaller. In addition, the additional information in this case is 
larger for lags greater than 1, and is maximum for the variable lag. 

Information Lag d 0 1 2 4 Variable 

IQi, s) 0.28 0.27 0.25 0.19 0.25 

IQi, s 1 c) 0 0.13 0.15 0.15 0.21 

\{h, s\c, d) 0 0.11 0.14 0.13 0.20 

Table 4. Mutual information (in bits) between HMM state s at time f and cepstral coefficient h at time t-d 
for various lags. Included is the conditional mutual information when the corresponding cepstral coefficient 

and its derivative at time t are given. 

This would predict that the previous frame's observation is not the optimal frame to use 
when conditioning a state's output distribution. To verify this, and to actually evaluate recognition 
performance, we incorporated time-correlation modeling in SRI's most accurate recognition 
system that uses genonic mixtures. We found that the recognition results were in perfect 
agreement with the behavior predicted by the mutual-information study. The improvements in 
recognition performance for fixed-lag history frames over the system that does not use conditional 
distributions were moderate and proportional to the measured amount of conditional mutual 
information at these frames. This information is currently captured in SRI's speech recognizer 
through the use of linear discriminant analysis, as explained in [Digalakis94] and the results are 
summarized in Table 5. 

System Bigram LM Trigram LM 

Baseline Genonic HMM 20.5 17.0 

Genonic HMM + Linear Discriminants 19.1 15.8 

Table 5. Word error rates (%) on the 20,000-word open-vocabulary male development set of the WSJ1 
corpus with and without linear discriminant transformations 

According to the mutual information results, we should expect a significant improvement 
in recognition performance when modeling the dependencies between the current frame and the 
last frame of the previous state — that is, when we model the dynamics across the whole 
subphonetic segment and condition the output HMM distributions not only on the previous output 
frames, but also on the segment start time. The observation that the incorporation of segmental 



features and modeling of the segment dynamics can improve recognition performance is 
consistent with previous results by other researchers [Ostendorf89] [Digalakis93] [Algazi93], and 
we are currently doing research in this area. 

3.4      REAL-TIME WALL-STREET JOURNAL DICTATION SYSTEM 

A significant effort in this project was invested in the development of a real-time 
continuous-density dictation system. While genone-based systems perform very well, they are 
computationally costly, as a large number of Gaussians need to be computed during recognition. 
We researched a variety of ideas to reduce the recognition time and created a real-time 
continuous-density dictation system while maintaining good recognition performance. 

3.4.1    Efficient Computation of Gaussian Probabilities 

Genonic HMM recognition systems require evaluation of very large numbers of Gaussian 
distributions, and can be very slow during recognition. The baseline system referenced here uses 
589 genonic mixtures (genones), each with 48 Gaussian distributions, for a total of 28,272 39- 
dimensional Gaussians. On ARPA's November 1992 20,000-word evaluation test set, this 
noncrossword, bigram system performs at a 13.43% word error rate. Decoding time from word 
lattices is 12.2 times slower than real time on an R4400 processor. Full grammar decoding time 
would be much slower. Since the decoding time of a genonic recognition system such as this one 
is dominated by Gaussian evaluation, one major thrust of our effort to achieve real-time 
recognition has been to reduce the number of Gaussians requiring evaluation each frame. We 
briefly describe two innovations we have used to reduce the number of Gaussians that need to be 
computed. For details, a paper describing these techniques is included in the appendix. 

Gaussian clustering 

We may reduce the total number of Gaussians per genone by clustering groups of 
Gaussians to form a single Gaussian density. Specifically, we used an agglomerative procedure to 
cluster the component densities within each genone to a smaller number. To do this, we must 
define a distance metric between Gaussians. We considered several criteria that were used in 
[Kannan94], such as entropy-based and generalized likelihood-based distortion measures. We 
found that the entropy-based measure worked better. Specifically, the cost of pooling two 
densities is the increase in entropy due to this pooling. Once we have reduced the number of 
Gaussians by clustering, we can reestimate their parameters using the Baum-Welch algorithm. 
This reestimation ensures state observation densities are better represented. 

In Table 6, we show the word error rate as a function of the number of Gaussians per 
genone. In the first row, we show the baseline case of 48 Gaussians per genone. When these are 
reduced to 18 Gaussians per genone using clustering, it is seen that the word error rate increases 
slightly (from 13.4% to 14.2%). However, by using just one iteration of the Baum-Welch 
algorithm to reestimate these Gaussians, the error rate becomes 13.6%, which is as good as the 
baseline error rate. In addition, we see that clustering, and then reestimating the Gaussians is 
superior to estimating a smaller number of Gaussians from scratch (last row of the table). The 
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table shows that we can reduce the number of Gaussians by about a factor of 3 (from 48 to 18), 
while maintaining the error rate. 

System Gaussians 
per Genone 

Word Error 
(%) 

Baseline 1 48 13.43 

Baseline 1 +Clustering 18 14.17 

above+Retraining 18 13.64 

Baseline2 25 14.35 

Table 6. Improved training of systems with fewer Gaussians by clustering from a larger number of 
Gaussians 

Gaussian shortlists 

Although clustering significantly reduces the total number of Gaussians, all the Gaussians 
belonging to genones used by HMM states that are in the Viterbi beam search must be evaluated 
at each frame during recognition. This evaluation includes a large amount of unnecessary 
computation; we have verified experimentally that the majority of the Gaussians will yield 
negligible probabilities. As a result, after reducing the Gaussians by a factor of 3 using clustering, 
the decoding time from word lattices is still 7.9 times slower than real time. 

We have developed a method similar to the one introduced by Bocchieri [Bocchieri93] for 
preventing a large number of unnecessary Gaussian computations. Our method is to partition the 
acoustic space and for each partition to build a Gaussian shortlist—a list specifying the subset of 
the Gaussian distributions expected to have high likelihood values in a given region of the 
acoustic space. First, vector quantization (VQ) is used to subdivide the acoustic space into 
regions. Then, one list of Gaussians is created for each combination of VQ region and genone. 
The lists are created empirically, by considering a sufficiently large amount of speech data. For 
each acoustic observation, each Gaussian distribution is evaluated. Those distributions whose 
likelihoods are within a predetermined fraction of the most likely Gaussian are added to the list 
for that VQ region and genone. 

When recognizing speech, each observation is vector quantized, and only those Gaussians 
found in the shortlist are evaluated. When this technique was used on the clustered genonic 
system described earlier, it resulted in shortlists with an average of 2.48 Gaussians per genone 
with no degradation in recognition accuracy. 

Figure 2 summarizes our results on computational reduction for Gaussian evaluations 
during recognition. We started with a speech recognition system with 48 Gaussians per genone (a 
total of 28,272 Gaussian distributions) that evaluated 14,538 Gaussian likelihood scores per frame 
and achieved a 13.4% word error rate running 12.2 times slower than real time on word lattices. 
Combining the clustering and Gaussian shortlist techniques, we decreased the average number of 
Gaussians contained in each list to 2.48. As a result, the system's computational requirements 
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were reduced to 732 Gaussian evaluations per frame, resulting in a system with word error of 
13.5% (identical to the baseline system), running at 2.5 times real time from word lattices. 

A. Unclustered system 
B. Clustered system 
C. Clustered system using various shortlists 

14.00- 
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Decode Time, from Word Lattices (x Real Time) 

Figure 2. Word error rate as a function of the decoding time for the baseline system (A) and systems with 
fast Gaussian evaluation schemes (B and C). 

3.4.2   Efficient Grammar Organization 

There is an intrinsic trade-off between recognition accuracy and recognition time. It is 
necessary to realize an attractive trade-off for both a real-time system and one that can be useful 
for research. Traditional approaches include adjusting the beamwidth of the Viterbi search and 
using less costly output distribution models, such as discrete density HMMs. We have explored 
some efficient grammar organization techniques to realize a good trade-off between speed and 
recognition accuracy. 

12 



Lexical trees 

We explored the use of lexicon trees as a technique for speeding up the recognition 
process. Lexicon trees represent the phonetics of the recognition vocabulary as a tree instead of as 
a list of pronunciations (lists of phones). With a tree representation, words starting with the same 
phonetic units share the computation of phonetic models. Because of the large amount of sharing, 
trees can drastically reduce the amount of computation required by a speech recognition system. 

There are, however, some drawbacks to this approach. First, triphone modeling is affected 
because of possible ambiguities in the right context of triphones in the lexical tree. Second, we 
cannot use bigram probabilities to prune word hypotheses before computing the word acoustic 
probabilities because the identity of the word being decoded is not known until the search process 
reaches a leaf of the tree. The first problem is not so serious since a large number of triphones in 
the tree have unambiguous right contexts. However, the problem can be handled by replicating 
triphones with different right contexts in the lexical tree. We have addressed the second problem 
by a method called Approximate Bigram Trees. In an approximate bigram tree, the aim is to 
model the salient portion of the backed-off bigram language model [Katz87] in use. In an 
approximate bigram tree, a standard lexicon tree (incorporating unigram word probabilities) is 
combined with a bigram section that maintains a linear (nontree) representation of the vocabulary. 
Bigram and backoff language model transitions are added to the leaves of the tree and to the 
word-final nodes of the bigram section. When the entire set of the bigram is represented, this 
network implements a full backed-off bigram language model with an efficient tree-based backoff 
section. In fact, for VQHMM systems, this scheme halves our typical decoding time for little or 
no cost in accuracy. Typically, however, we need further reduction in the computational 
requirement. To achieve this we represent only a subset of the group of bigram transitions (and 
adjust the backoff probabilities appropriately). This degrades the accuracy of our original bigram 
language model, but reduces its computational requirements. The choice of which bigrams to 
represent is the key design decision for approximate bigram trees. We have experimented with 
various techniques for choosing bigram subsets as detailed in [Murveit94]. 

After-the-fact language model 

Another method of incorporating a language model in a lexical tree is to use after-the fact 
language modeling. In this scheme, at every frame the list of word endings and their probabilities 
are stored. An acoustic search is then carried out using a lexical tree. At the end of the tree, each 
ending word is backtraced to locate the best predecessor word, and the corresponding bigram 
probability is applied. We have also used this scheme to apply trigram probabilities. The after-the- 
fact language model is faster than the approximate bigram trees, at the cost of suboptimal 
recognition accuracy. 

3.4.3   Multiprocessing 

We used multiprocessing to speed up the recognition process. We implemented this on a 
four-processor SPARC 20. One processor was used to perform the search, while four processors 
were used to compute the Gaussian probabilities. 
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3.4.4    Results 

As a result of the ideas we have described, we were able to develop a real-time 
continuous-density 20,000-word dictation system using trigram language models. The 
recognition accuracy of this system was 84% as compared to 91% for a non-real-time system 
where trigram rescoring is used. The significant innovations used to achieve this result were the 
Gaussian clustering and shortlists to decrease the number of Gaussians computed, a more efficient 
organization of the grammar using lexical trees and after-the-fact language modeling, and 
multiprocessing to share the computational load among different CPUs. 

3.5 RECOGNITION IN MISMATCHED CHANNELS 

Under NSF funding, SRI developed a technique called Probabilistic Optimum Filtering 
(POF) that allows a recognizer to operate in adverse acoustic environments. A mapping is 
established between the clean acoustic space, used to estimate the HMMs, and the noisy space, in 
which the recognizer has to operate. To estimate the mapping parameters, a small stereo database 
with simultaneous recordings of the clean and noisy spaces must be available. 

The POF technique has been applied to the problem of microphone mismatch between the 
training and testing phases, where the goal is to be able to use the same recognizer with a variety 
of microphones and channels, so that the recognizer does not need to be retrained for each new 
acoustic environment. In the past, we have experimentally tested the mapping on over-the- 
telephone recordings. We found that using POF with wideband HMMs results in higher 
recognition accuracy than using narrowband telephone models directly. 

Using consistency modeling project funding, we transferred the POF technique to the 
WSJ domain, and tested the algorithm on data recorded with a desktop microphone in the 
November 1993 ARPA benchmarks. The results showed that after compensating for the mismatch 
between the close-talk and the desktop microphones, the recognition performance of the 
secondary microphone is almost as good as on the one used to train the models. A paper about the 
1993 SRI Spoke evaluation is included in the appendix. 

3.6 SPEAKER ADAPTATION 

Automatic speech recognition performance degrades rapidly when there is a mismatch 
between the testing and the training conditions under which the recognizer parameters were 
estimated. It may not always be feasible to have consistent conditions in the testing and training 
phases. For example, in large-vocabulary dictation applications the speaker-independent 
performance degrades dramatically for outlier speakers, such as nonnative speakers of the 
recognizer language. Since modem large-vocabulary speech recognizers have millions of free 
parameters, it is not practical to collect large amounts of speaker-dependent data and retrain the 
recognizer models. Similarly, it is desirable to avoid the expense of collecting additional data 
when the recognizer is going to be used on speech transmitted through a different channel than the 
one used in training. Such problems may be solved by adapting the recognizer models, using 
much smaller amounts of adaptation data than those used in conventional training techniques. We 
have developed an adaptation technique that combines the advantages of the two main adaptation 
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approaches used in the past — namely, the quick adaptation characteristics of transformation 
approaches and the nice asymptotic properties of Bayesian schemes. 

3.6.1 Transformation-based Adaptation 

Transformation-based approaches to speaker adaptation transform the speaker's feature 
space to "match" the space of the training population. This approach has the advantage of 
simplicity and, if the number of free parameters is small, transformation techniques adapt to the 
user with only a small amount of adaptation speech (quick adaptation). Disadvantages of 
transformation methods are that they are usually text-dependent — that is, they require the new 
speaker to record some predetermined sentences — and that they may not take full advantage of 
large amounts of adaptation data. 

We have developed a novel transformation-based approach to speaker adaptation for 
continuous mixture-density HMMs. We apply the transformation at the distribution level, instead 
of transforming the feature vectors directly, and we use the expectation-maximization (EM) 
algorithm to estimate the transformation parameters by maximizing the likelihood of the 
adaptation data. Using this approach, we are not required to time-align the new- and reference- 
speaker data, and the transformation parameters can be estimated using new-speaker data alone. 
Our scheme can also be viewed as a constrained estimation of Gaussian mixtures, since we apply 
the same transformation to all the components of a particular mixture (or a group of mixtures, if 
there is tying of transformations) instead of independently reestimating them. This approach 
achieves quick adaptation by adapting Gaussians for which there were no observations in the 
training data, based on data that were most likely generated by other Gaussians of the same or 
neighboring mixtures. A paper describing this technique is included in the appendix. 

3.6.2 Combined Bayesian and Transformation Methods 

A second main family of adaptation algorithms follows a Bayesian approach, where the 
speaker-independent information is encapsulated in the prior distributions. The Bayesian 
approach has nice asymptotic properties: speaker-adaptive performance will converge to speaker- 
dependent performance as the amount of adaptation speech increases. However, the adaptation 
rate is usually slow, since only the Gaussians of the speaker-independent models that are most 
likely to have generated some of the adaptation data will be adapted to the speaker. These 
Gaussians may represent only a small fraction of the total number in continuous HMMs with a 
large number of Gaussians. 

We have developed an adaptation scheme that retains the nice properties of Bayesian 
schemes for large amounts of adaptation data, and has improved performance for small amounts 
of adaptation data. We have achieved this by using our transformation-based adaptation as a 
preprocessing step to transform the speaker-independent models so that they better match the new 
speaker characteristics and improve the prior information in Bayesian estimation schemes. A 
paper describing this technique is included in the appendix. 
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3.6.3 Hierarchical Transformations 

The transformation-based algorithm described in Section 3.6.1 results in quick adaptation 
of the HMMs. To reach optimum performance for a given set of adaptation sentences we need to 
determine the total number of parameters used in the transformations. An excessive number of 
parameters will result in some of them being undertrained and therefore hurting performance. A 
conservatively low number of parameters will guarantee that the recognition error rate is bounded 
by the speaker-independent performance but will not use the adaptation data efficiently. 

To alleviate this problem we invented a hierarchical adaptation scheme that will assign the 
most specific transformation to each genone. A global threshold is provided to guarantee that only 
transformations that get enough adaptation training frames are used to transform the genones. In 
this hierarchical scheme we estimate transformations following a tree structure, where at the top 
we have a global transformation (estimated with all the adaptation data) and at the leaves we have 
the most specific transformations (one for each genone). To find the optimum transformation for a 
given genone we search for the most specific transformation (close to the leaf) that is above the 
threshold. We found that the hierarchical adaptation scheme results in very robust systems. For 
example, we tested the algorithm using various adaptation sets ranging from 1 to 40 sentences. 
Without the hierarchical method the speaker-adapted performance may become worse than the 
speaker-independent case for very short amounts of adaptation data. This does not happen when 
the hierarchical method is used. This characteristic is very important for the global consistency 
techniques that we are currently investigating in the follow-on SRI project 6429. 

3.6.4 Speaker Adaptation Results 

We evaluated our adaptation algorithms on the Spoke 3 task of the Phase 1, large- 
vocabulary WSJ corpus, trying to improve recognition performance for nonnative speakers of 
American English. We measured the word error rate on the development set and the November 
1993 AREA evaluation set of the WSJ corpus using a trigram language model. Our results, 
presented in Table 7, represent the best reported results to date on this task. The nonnative 
recognition performance after adaptation, using only 40 sentences, is slightly higher than that of 
native speakers, which for the same speaker-independent models is a 9.7% and 7.2% word error 
with a bigram and a trigram language model, respectively. 

Test Set 
Speaker Independent Speaker Adapted 

Bigram Trigram Bigram Trigram 

Development 29.3 23.5 13.6 10.3 

November 1993 21.0 16.5 13.0 10.0 

Table 7. Adaptation results using bigram and trigram language models on various test sets of nonnative 
speakers 
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3.7 RECOGNITION IN ADDITIVE NOISE 

A noise-robust recognizer was designed to operate in a noisy channel. We studied several 
approaches, including POF mapping, HMM adaptation, and combination of mapping and 
adaptation. 

The experimental framework was defined according to the 1994 ARPA-sponsored CSR 
evaluation Spoke test 10 (noisy channel). In this test a 1-minute sample of the noise is provided 
for the adaptation of the recognizer models. This noise was used to build several stereo 
compensation data sets consisting of a clean channel and a noisy channel at a given SNR level. 

The compensation sets were used to estimate POF mappings and to adapt the HMMs to a 
specific SNR level. The mapping technique estimates the clean features at the front-end signal 
processing stage, while the HMM adaptation method modifies the HMMs to match the noise level 
of the test sentence. 

We found that both approaches are very effective in compensating for the additive noise 
when used alone. We also found that as the noise level increases (lower SNR) combining both 
techniques produces lower error rates. In the 1994 ARPA benchmarks we showed that the ratio of 
noisy-speech error rate over the clean-speech error rate can be reduced from 4.9 to 1.8 for low 
SNR levels using this compensation scheme. A paper describing this technique is included in the 
appendix. 

3.8 GLOBAL CONSISTENCY MODELING 

We have recently initiated research into global consistency modeling on ARPA-funded 
SRI project 6429. In Section 3.3 we represented the local history of a particular frame, and 
conditioned the likelihood of each frame on this local history. In global consistency modeling the 
history involves longer periods of time, such as previous sentences or even sentences in the 
training data. For example, if we had training data from different speakers, then the global history 
might be allowed to take on values of each different training speaker. In this case, the likelihood 
of a test utterance must be conditioned separately on each training speaker, and the model of the 
training speaker corresponding to the maximum likelihood is used. This idea is already used in 
many speech recognition systems where separate male and female models are trained, and during 
recognition the model that gives higher likelihood is used. 

We have initiated research into the above idea of training a multitude of template models, 
and during testing, picking the best set of models to use for recognition. Among the research 
issues are model storage, efficient computation of the best models, and optimal estimation of the 
model for recognition. We have used ideas from the speaker adaptation algorithm described in 
Section 3.6 to address the storage issues. Thus, each template model is speaker-adapted instead of 
speaker-dependent. This greatly reduces the storage requirements. We have also developed some 
ideas for efficient computation of the best models among the templates and estimation of the 
appropriate recognition model. Based on these ideas, we were able to reduce the speaker- 
independent word error rate by about 5% on a test set of 230 WSJ sentences from the 1993 
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development and evaluation set. Details of this method are presented in the December 1994 
quarterly report of SRI project 6429. 
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6. TRAVEL 

This project has partially of fully supported the participation of SRI staff members in 
many important technical and professional meetings: 

The DARPA-sponsored HLT workshop in Princeton, NJ, in March 1993 was attended 
by Vassilios Digalakis, Hy Murveit, Mitch Weintraub, and Victor Abrash. 

The ARPA-sponsored HLT/SLT workshop in Princeton, NJ, in March 1994 was 
attended by Vassilios Digalakis, Hy Murveit, Mitch Weintraub, Patti Price, and Peter 
Monaco. 

Vassilios Digalakis, Hy Murveit, and Mitch Weintraub attended the Spoken Language 
System Technology workshop in Cambridge, MA, in January 1993. 

Hy Murveit attended the colloquium on Human-Machine Communication by Voice in 
Los Angeles, CA, in February 1993. 

Vassilios Digalakis, Hy Murveit, and Mitch Weintraub attended the IEEE International 
Conference on Acoustics, Speech, and Signal Processing, in Minneapolis, MN, in 
April 1993. 

The ARPA planning meeting in Washington, DC, in June 1993, was attended by Patti 
Price. 

The ARPA meeting in Pittsburgh, PA, in September 1993, was attended by Patti Price. 

The Workshop on Robust Speech Analysis, at Rutgers University, NJ, was attended by 
Vassilios Digalakis in July 1993. 

Vassilios Digalakis, Peter Monaco, and Hy Murveit attended the December 1993 IEEE 
workshop on Automatic Speech Recognition at Snowbird, UT. 

The IEEE International Conference on Acoustics, Speech, and Signal Processing, in 
Adelaide, Australia, in April 1994, was attended by Vassilios Digalakis, and Peter 
Monaco. 

Patti Price attended the ARPA coordinating committee meeting in Washington, DC, in 
June 1994. 

Vassilios Digalakis attended the 2nd Workshop on Robust Speech Analysis at Rutgers 
University, NJ, in August 1994. 
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7. TRANSITIONS AND DOD INTERACTIONS 

We were active participants in the two 6-week Robust Speech Processing workshops 
sponsored by NSA at Rutgers in July-August 1993 and June-August 1994. During the first year, 
two researchers, Leo Neumeyer and Vassilios Digalakis, focused on training issues and channel 
equalization techniques for acoustic modeling of telephone speech, and their work at the 
workshop was included in a special issue of the IEEE Transactions on Speech and Audio 
Processing published in October 1994. During the second year, they focused on techniques for 
unsupervised speaker adaptation. 

SRI's DECIPHER speech recognition technology has being transitioned to Boston 
University for joint research funded by NSF and ARPA. Under internal SRI funding our 
DECIPHER technology was modified to support ARPA-sponsored research on robust front-end 
signal processing at CAIP in collaboration with laboratories at the David Sarnoff Research 
Center. 

Several applications based on DECIPHER technology were demonstrated at Spoken 
Language Technology Applications Day in April 1993. This event was attended by more than 300 
people, about equally divided among government and commercial representatives. Our 
participation in this event was sponsored by internal funds. 

SRI has invested significant internal resources toward the development of robust, portable 
speech recognition software and tools for its use and has launched a spin-off company, Corona 
Corporation, to commercialize speech recognition technology developed at SRI's Speech 
Technology and Research (STAR) Laboratory. Two of this project's main contributors, Hy 
Murveit and Peter Monaco, are among the founders of Corona which is currently owned by SRI, 
Corona employees and STAR Lab employees. SRI and the STAR Lab maintain a close 
relationship with Corona. The STAR Lab's main focus is on research, development and 
advancing the technology. Corona's main focus is on applications, product development and 
exploitation of the technology commercially. Several commercial clients are using the resultant 
technology in their own research or in field trials. 
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8. SOFTWARE AND HARDWARE PROTOTYPES 

The algorithms and software developed in this project have been incorporated into the 
DECIPHER speech recognition system. We are attempting to commercialize speech recognition 
based on DECIPHER technology and based on tools and other extensions to it that were funded 
by SRI's support. SRI currently has several commercial clients that are in the process of 
evaluating speech recognition products based on DECIPHER technology. 
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ABSTRACT 

We describe a technique we call Progressive Search 
which is useful for developing and implementing speech 
recognition systems with high computational requirements. The 
scheme iteratively uses more and more complex recognition 
schemes, where each iteration constrains the search space of the 
next. An algorithm, the Forward-Backward Word-Life 
Algorithm, is described. It can generate a word lattice in a 
progressive search that would be used as a language model 
embedded in a succeeding recognition pass to reduce 
computation requirements. We show that speed-ups of more than 
an order of magnitude are achievable with only minor costs in 
accuracy. 

1. INTRODUCTION 

Many advanced speech recognition techniques cannot be 
developed or used in practical speech recognition systems 
because of their extreme computational requirements. Simpler 
speech recognition techniques can be used to recognize speech in 
reasonable time, but they compromise word recognition 
accuracy. In this paper we aim to improve the speed/accuracy 
trade-off in speech recognition systems using progressive search 
techniques. 

We define progressive search techniques as those which 
can be used to efficiently implement other, computationally 
burdensome techniques. They use results of a simple and fast 
speech recognition technique to constrain the search space of a 
following more accurate but slower running technique. This may 
be done iteratively—each progressive search pass uses a 
previous pass' constraints to run more efficiently, and provides 
more constraints for subsequent passes. 

We will refer to the faster speech recognition techniques 
as "earlier-pass techniques", and the slower more accurate 
techniques as "advanced techniques." Constraining the costly 
advanced techniques in this way can make them run significantiy 
faster without significant loss in accuracy. 

The key notions in progressive search techniques are: 

1. An early-pass speech recognition phase builds a 
lattice, which contains all the likely recognition unit 
strings (e.g. word sequences) given the techniques 
used in that recognition pass. 

2. A subsequent pass uses this lattice as a grammar that 
constrains the search space of an advanced technique 
(e.g., only the word sequences contained in a word 
lattice of pass p would be considered in pass p+1). 

Allowing a sufficient breadth of lattice entries should 
allow later passes to recover the correct word sequence, while 
ruling out very unlikely sequences, thus achieving high accuracy 
and high speed speech recognition. 

2. PRIOR ART 

There are three important categories of techniques that 
aim to solve problems similar to the ones the progressive search 
techniques target 

2.1. Fast-Match Techniques 

Fast-match techniques[l] are similar to progressive 
search in that a coarse match is used to constrain a more 
advanced computationally burdensome algorithm. The fast 
match, however, simply uses the local speech signal to constrain 
the costly advanced technique. Since the advanced techniques 
may take advantage of non-local data, the accuracy of a fast- 
match is limited and will ultimately limit the overall technique's 
performance. Techniques such as progressive search can bring 
more global knowledge to bear when generating constraints, and, 
thus, more effectively speed up the costly techniques while 
retaining more of their accuracy. 

2.2. N-Best Recognition Techniques 

N-best techniques[2] are also similar to progressive 
search in that a coarse match is used to constrain a more 
computationally costly technique. In this case, the coarse 
matcher is a complete (simple) speech recognition system. The 
output of the N-best system is a list of the top N most likely 
sentence hypotheses, which can then be evaluated with the 
slower but more accurate techniques. 

Progressive search is a generalization of N-best—the 
earlier-pass technique produces a graph, instead of a list of N- 
best sentences. This generalization is crucial because N-best is 
only computationally effective for N in the order of tens or 
hundreds. A progressive search word graph can effectively 
account for orders of magnitude more sentence hypotheses. By 
limiting the advanced techniques to just searching the few top N 
sentences, N-best is destined to limit the effectiveness of the 
advanced techniques and, consequently, the overall system's 



accuracy. Furthermore, it does not make much sense to use N- 
best in an iterative fashion as it does with progressive searches. 

2.3.  Word Lattices 

This technique is the most similar to progressive search. 
In both approaches, an initial-pass recognition system can 
generate a lattice of word hypotheses. Subsequent passes can 
search through the lattice to find the best recognition hypothesis. 
It should be noted that, although we refer to lattices as word 
lattices, they could be used at other linguistic level, such as the 
phoneme, syllable, e.Lc. 

In the traditional word-lattice approach, the word lattice 
is viewed as a scored graph of possible segmentations of the 
input speech. The lattice contains information such as the 
acoustic match between the input speech and the lattice word, as 
well as segmentation information. 

The progressive search lattice is not viewed as a scored 
graph of possible segmentations of the input speech. Rather, the 
lattice is simply viewed as a word-transition grammar which 
constrains subsequent recognition passes. Temporal and scoring 
information is intentionally left out of the progressive search 
lattice. 

This is a critical difference. In the traditional word-lattice 
approach, many segmentations of the input speech which could 
not be generated (or scored well) by the earlier-pass algorithms 
will be eliminated for consideration before the advanced 
algorithms are used. With progressive-search techniques, these 
segmentations are implicit in the grammar and can be recovered 
by the advanced techniques in subsequent recognition passes. 

3. Building Progressive Search Lattices 

The basic step of a progressive search system is using a 
speech recognition algorithm to make a lattice which will be 
used as a grammar for a more advanced speech recognition 
algorithm. This section discusses how these lattices may be 
generated. We focus on generating word lattices, though these 
same algorithms are easily extended to other levels. 

3.1. The Word-Life Algorithm 

We implemented the following algorithm to generate a 
word-lattice as a by-product of the beam search used in 
recognizing a sentence with the DECIPHER™ system[4-7]. 

1. For each frame, insert into the table ActivefW, t) all 
words W active for each time t Similarly construct 
tables End(W, t) and Transitions(W), W2, t) for all 
words ending at time t. and for all word-to-word 
transition at time t 

2. Create a table containing the word-lives used in the 
sentence, WordLivesfW, Tstart, T^). A word-life for 
word W is defined as a maximum-length interval 
(frame Tstarl to Tend) during which some phone in 
word W is active. That is. 

We Active(.W,t),Tatarl£t*Tend 

3. Remove word-lives from the table if the word never 
ended between Tltart and Tend, that is, remove 

WordLivesfW, Tslart, Teni) if there is time t between 
Tstart and Tend where End(W, t) is true. 

4. Create a finite-state graph whose nodes correspond 
to word-lives, whose arcs correspond to word-life 
transitions stored in the Transitions table. This finite 
state graph, augmented by language model 
probabilities, can be used as a grammar for a 
subsequent recognition pass in the progressive 
search. 

This algorithm can be efficiently implemented, even for 
large vocabulary recognition systems. That is, the extra work 
required to build the "word-life lattice" is minimal compared to 
the work required to recognize the large vocabulary with a early- 
pass speech recognition algorithm. 

This algorithm develops a grammar which contains all 
whole-word hypotheses the early-pass speech recognition 
algorithm considered. If a word hypothesis was active and the 
word was processed by the recognition system until the word 
finished (was not pruned before transitioning to another word), 
then this word will be generated as a lattice node. Therefore, the 
size of the lattice is directly controlled by the recognition 
search's beam width. 

This algorithm, unfortunately, does not scale down 
well—it has the property that small lattices may not contain the 
best recognition hypotheses. This is because one must use small 
beam widths to generate small lattices. However, a small beam 
width will likely generate pruning errors. 

Because of this deficiency, we have developed the 
Forward/Backward Word-Life Algorithm described below. 

3.2. Extending the Word-Life Algorithm Using 
Forward And Backward Recognition Passes 

We wish to generate word lattices that scale down 
gracefully. That is, they should have the property that when a 
lattice is reduced in size, the most likely hypotheses remain and 
the less likely ones are removed. As was discussed, this is not the 
case if lattices are scaled down by reducing the beam search 
width. 

The forward-backward word-life algorithm achieves this 
scaling property. In this new scheme, described below, the size of 
the lattice is controlled by the LatticeThresh parameter. 

1. A standard beam search recognition pass is done 
using the early-pass speech recognition algorithm. 
(None of the lattice building steps from Section 3.1 
are taken in this forward pass). 

2. During this forward pass, whenever a transition 
leaving word W is within the beam-search, we record 
that probability in ForwardProbability(Wframe). 

3. We store the probability of the best scoring 
hypothesis from the forward pass, Pbest, and 
compute a pruning value 
Pprune = Pbest I LatticeThresh. 



4. We then recognize the same sentence over again 
using the same models, but the recognition algorithm 
is run backwards1. 

5. The lattice building algorithm described in Section 
3.1 is used in this backward pass with the following 
exception. During the backward pass, whenever 
there is a transition between words Wj and Wj at time 
t, we compute the overall hypothesis probability P^ 
as the product of ForwardProbability(Wj,t-l), the 
language model probability P(WjWß. and the 
Backward pass probability mat Wj ended at time t 
(i.e. the probability of starting word Wj at time t and 
finishing the sentence). If .%, < Ppnme, then the 
backward transition between Wj and Wj at time t is 
blocked. 

Step 5 above implements a backwards pass pruning 
algorithm. This both greatly reduces the time required by the 
backwards pass, and adjusts the size of the resultant lattice. 

4. Progressive Search Lattices 

We have experimented with generating word lattices 
where the early-pass recognition technique is a simple version of 
the DECIPHER™ speech recognition system, a 4-feature, 
discrete density HMM trained to recognize a 5,000 vocabulary 
taken from DARPA's WSJ speech corpus. The test set is a 
difficult 20-sentence subset of one of the development sets. 

We define the number of errors in a single path p in a 
lattice, Errors(p), to be the number of insertions, deletions, and 
substitutions found when comparing the words rnp to a reference 
string. We define the number of errors in a word lattice to be the 
minimum of Errors(p) for all paths p in the word lattice. 

The following tables show the effect adjusting the beam 
width and LatticeThresh has on the lattice error rate and on the 
lattice size (the number of nodes and arcs in the word lattice). 
The grammar used by the has approximately 10,000 nodes and 
1,000,000 arcs. The the simple recognition system had a 1-best 
word error-rate ranging from 27% (beam width le-52) to 30% 
(beam width le-30). 

Table 1: Effect Of Pruning On Lattice Size 

Beam Width le-30 

Beam Width le-34 

Lattice 
Thresh 

nodes arcs 
# 

errors 
%word 

error 

le-5 60 278 43 10.57 

le-9 94 541 34 8.35 

le-14 105 1016 30 7.37 

le-18 196 1770 29 7.13 

le-32 323 5480 23 5.65 

le^5 372 8626 23 5.65 

inf 380 9283 23 5.65 

Lattice 
Thresh nodes arcs 

# 
errors 

%word 
error 

le-5 64 299 28 6.88 

le-9 105 613 20 4.91 

le-14 141 1219 16 3.93 

le-18 260 2335 15 3.69 

le-23 354 3993 15 3.69 

le-32 537 9540 15 3.69 

Beam Width le-38 

Lattice 
Thresh 

nodes arcs 
# 

errors 
%word 

error 

le-14 186 1338 14 3.44 

le-18 301 2674 13 3.19 

le-23 444 4903 12 2.95 

Beam Width le-42 

Lattice 
Thresh 

nodes arcs 
# 

errors 
%wd 
error 

le-14 197 1407 13 3.19 

le-18 335 2926 11 2.70 

le-23 520 5582 10 2.46 

Beam Width le-46 

Lattice 
Thresh 

nodes arcs 
# 

errors 
%word 

error 

le-14 201 1436 13 3.19 

le-18 351 3045 10 2.46 

le-23 562 5946 10 2.46 

Beam Width le-52 

Lattice 
Thresh 

nodes arcs 
# 

errors 
%word 

error 

le-14 216 1582 12 2.95 

le-18 381 3368 9 221 

The two order of magnitude reduction in lattice size has 
a significant impact on HMM decoding time. Table 2 shows the 
per-sentence computation time required for the above test set 
when computed using a Sparc2 computer, for both the original 
grammar, and word lattice grammars generated using a 
LatticeThresh of le-23. 

1. Using backwards recognition the sentence is processed 
from last frame to first frame with all transitions reversed. 



Table 2: Lattice Computation Reductions ACKNOWLEDGEMENTS 

Beam Width 
Forward pass 
recognition 
time (sees) 

Lattice 
recognition 
time (sees) 

le-30 167 10 
le-34 281 16 
le-38 450 24 
le46 906 57 
le-52 1749 65 

5. Applications of Progressive Search Schemes 

Progressive search schemes can be used in die same way 
N-best schemes are currently used. The two primary applications 
we've had at SRI are: 

5.1. Reducing the time required to perform 
speech recognition experiments 

At SRI, we've been experimenting with large- 
vocabulary tied-mixture speech recognition systems. Using a 
standard decoding approach, and average decoding times for 
recognizing speech with a 5,000-word bigram language model 
were 46 times real time. Using lattices generated with beam 
widths of le-38 and a LattkeThresh of le-18 we were able to 
decode in 5.6 times real time). Further, there was no difference in 
recognition accuracy between the original and the lattice-based 
system. 

5.2. Implementing recognition schemes that 
cannot be implemented with a standard 
approach. 

We have implemented a trigram language model on our 
5,000-word recognition system. This would not be feasible using 
standard decoding techniques. Typically, continuous-speech 
trigram language models are implemented either with fastmatch 
technology or, more recently, with N-best schemes. However, it 
has been observed at BBN that using an N-best scheme (N=100) 
to implement a trigram language model for a 20.000 word 
continuous speech recognition system may have significantly 
reduced the potential gain from the language model. That is, 
about half of the time, correct hypotheses that would have had 
better (trigram) recognition scores than the other top-100 
sentences were not included in the top 100 sentences generated 
by a bigram-based recognition system[8]. 

We have implemented trigram-based language models 
using word-lattices, expanding the finite-state network as 
appropriate to unambiguously represent contexts for all trigrams. 
We observed that the number of lattice nodes increased by a 
factor of 2-3 and the number of lattice arcs increased by a factor 
of approximately 4 (using lattices generated with beam widths of 
le-38 and a LattkeThresh of le-18). The resulting decoding 
times increased approximately by 50% when using trigram 
lattices instead of bigram lattices. 

We gratefully acknowledge support for this work from 
DARPA through Office of Naval Research Contract N00014-92- 
C-0154. The Government has certain rights in this material. Any 
opinions, findings, and conclusions or recommendations 
expressed in this material are those of the authors and do not 
necessarily reflect the views of the government funding agencies. 
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ABSTRACT 

An algorithm is proposed that achieves a good trade-off between modeling resolution and 

robustness by using a new, general scheme for tying of mixture components in continuous 

mixture-density hidden Markov model (HMM)-based speech recognizers. The sets of 

HMM states that share the same mixture components are determined automatically using 

agglomerative clustering techniques. Experimental results on ARPA's Wall-Street Journal 

corpus show that this scheme reduces errors by 25% over typical tied-mixture systems. 

New fast algorithms for computing Gaussian likelihoods—the most time-consuming 

aspect of continuous-density HMM systems—are also presented. These new algorithms 

significantly reduce the number of Gaussian densities that are evaluated with little or no 

impact on speech recognition accuracy. 
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1 INTRODUCTION 

Hidden Markov model (HMM)-based speech recognizers with tied-mixture (TM) observa- 

tion densities [1][2] achieve robust estimation and efficient computation of the density 

likelihoods. However, the typical mixture size used in TM systems is small and does not 

accurately represent the acoustic space. Increasing the number of the mixture components 

(also known as the codebook size) is not a feasible solution, since the mixture-weight dis- 

tributions become too sparse. In large-vocabulary problems, where a large number of 

basic HMMs is used and each has only a few observations in the training data, sparse mix- 

ture-weight distributions cannot be estimated robustly and are expensive to store. 

HMMs with continuous mixture densities and no tying constraints (fully continuous 

HMMs), in contrast, provide a detailed stochastic representation of the acoustic space at 

the expense of increased computational complexity and lack of robustness. A detailed rep- 

resentation is critical for large-vocabulary speech recognition. It has recently been shown 

[3] that, in large-vocabulary recognition tasks, HMMs with continuous mixture densities 

and no tying consistently outperform HMMs with tied-mixture densities. To overcome the 

robustness issue, continuous HMM systems use various schemes. Gauvain in [4] smooths 

the mixture-component parameters with maximum a-posteriori (MAP) estimation and 

implicitly clusters models that have small amounts of training via back-off mechanisms. 

Young in [5] uses clustering at the HMM state level and estimates mixture densities only 

for clustered states with enough observations in the training data. 

In this work, and in order to achieve the optimum trade-off between acoustic resolution 

and robustness, we choose to generalize the tying of mixture components. From the fully 

continuous HMM perspective, we improve the robustness by sharing the same mixture 

components among arbitrarily defined sets of HMM states. From the tied-mixture HMM 

perspective, we improve the acoustic resolution by simultaneously increasing the number 

of different sets of mixture components (or codebooks) and reducing each codebook's 

size. These two changes can be balanced so that the total number of component densities 

in the system is effectively increased. We propose a new algorithm that automatically 



determines the sets of HMM states that will share the same mixture components. The 

algorithm can also be viewed as a method that transforms a system with a high degree of 

tying among the mixture components to a system with a smaller degree of tying. The 

appropriate degree of tying for a particular task depends on the difficulty of the task, the 

amount of available training data, and the available computational resources for recogni- 

tion, since systems with a smaller degree of tying have higher computational demands 

during recognition. 

In Section 2 of this paper, we present the general form of mixture observation distributions 

used in HMMs and discuss previous work and variations of this form that have appeared 

in the literature. In Section 3 we present the main algorithm. In Section 4 we present word 

recognition results using ARPA's Wall Street Journal speech corpus. To deal with the 

increased amount of computation that continuous-density HMMs require during decoding, 

we present algorithms for the fast evaluation of Gaussian likelihoods in Section 5. Conclu- 

sions are given in Section 6. 

2 MIXTURE OBSERVATION DENSITIES IN HMMs 

A typical mixture observation distribution in an HMM-based speech recognizer has the 

form 

p(xt\s)  =     T   P(q\s)f(xt\q) (1) 

where s represents the HMM state, xt the observed feature at frame t, and Q(s) the set of 

mixture-component densities used in state s. We shall use the term codebook to denote the 

set Q(s). The stream of continuous vector observations can be modeled directly using 

Gaussians or other types of densities in the place of f(xt I q), and HMMs with this form of 

observation distributions appear in the literature as continuous HMMs [6]. 

Various forms of tying have appeared in the literature. When tying is not used, the sets of 

component densities are disjoint for different HMM states—that is, Q (s) n Q (s') =0 



if   s * s'   . We shall refer to HMMs that use no sharing of mixture components as fully 

continuous HMMs. 

To overcome the robustness and computation issues, the other extreme has also appeared 

in the literature: all HMM states share the same set of mixture components—that is, 

Q (s) = Q is independent of the state s. HMMs with this degree of sharing were pro- 

posed in [1], [2] under the names Semi-Continuous and Tied-Mixture HMMs. Tied-mix- 

ture distributions have also been used with segment-based models, and a good review is 

given in [7]. The relative performance of tied-mixture and fully continuous HMMs usually 

depends on the amount of the available training data. With small to moderate amounts of 

training data, tied-mixture HMMs can be shown to outperform fully continuous ones, but 

with larger amounts of training data and appropriate smoothing fully continuous HMMs 

perform better [1][3]. 

Intermediate degrees of tying have also been examined. In phone-based tying, described 

in [8][9][10], only HMM states that belong to allophones of the same phone share the 

same mixture components—that is, Q (s) - Q (s') if s and s' are states of context- 

dependent HMMs with the same center phone. We will use the term phonetically tied to 

describe this kind of tying. Of course, for context-independent models, phonetically tied 

and fully continuous HMMs are equivalent. However, phonetically tied mixtures (PTM) 

did not significantly improve recognition performance in previous work. 

3 GENONIC MIXTURES 

The continuum between fully continuous and tied-mixture HMMs can be sampled at any 

point. The choice of phonetically tied mixtures, although linguistically motivated, is 

somewhat arbitrary and may not achieve the optimum trade-off between resolution and 

trainability. We prefer to optimize performance by using an automatic procedure to iden- 

tify subsets of HMM states that will share mixtures. The algorithm that we propose fol- 

lows a bootstrap approach from a system that has a higher degree of tying (i.e., a TM or a 

PTM system), and progressively unties the mixtures using three steps: clustering, splitting 

and reestimation (Figure 1). 



3.1 Clustering 

In the first step of the algorithm (see Figure la), the HMM states of all allophones of a 

phone are clustered following an agglomerative hierarchical clustering procedure [11]. 

The states are clustered based on the similarity of their mixture-weight distributions. Any 

measure of dissimilarity between two discrete probability distributions can be used as the 

distortion measure during clustering. Following Lee [12] and Hwang [13], we use the 

increase in the weighted-by-counts entropy of the mixture-weight distributions that is 

caused by the merging of the two states. Let H (s) denote the entropy of the discrete dis- 

tribution [p(q\s),q€ Q(s)], 

H(s) =-   T   p(q\s)log p(q\s) . (2) 

Then, the distortion that occurs when two states Sj and s2 with Q (s{) = Q (s2) are clus- 

tered together into the clustered state s is defined as 

d (svs2) = (n1 + n2)H(s) -nflisj -n2H(s2)  , (3) 

where nj, n2 represent the number of observations used to estimate the mixture-weight 

distributions of the states Sj, S2, respectively. The mixture-weight distribution of the clus- 

tered state s is 

and the clustered state uses the same set of mixture components as the original states, 

Q(s) =o(^j) = Q (s2) . This distortion measure can be easily shown to be nonnega- 

tive, and, in addition, d (s, s) = 0. 

The clustering procedure partitions the set of HMM states S into disjoint sets of states 

S = Sx U S2 U . . . U Sn    , (5) 

where n, the number of clusters, is determined empirically. 



The same codebook will be used for all HMM states belonging to a particular cluster 5,-. 

Each state in the cluster will, however, retain its own set of mixture weights. 

3.2 Splitting 

Once the sets of HMM states that will share the same codebook are determined, seed 

codebooks for each set of states that will be used by the next reestimation phase are con- 

structed (see Figure lb). These seed codebooks can have a smaller number of component 

densities, since they are shared by fewer HMM states than the original codebook. They 

can be constructed by either one or a combination of two procedures: 

• Identifying the most likely subset Q (5,) c Q (S) of mixture components for each 

cluster of HMM states 5,-, and using a copy of that subset in the next phase as the seed 

codebook for states in 5,-. 

• Using a copy of the original codebook for each cluster of states. The number of compo- 

nent densities in each codebook can then be clustered down (see Section 5.1) after per- 

forming one iteration of the Baum-Welch algorithm over the training data with the new 

relaxed tying scheme. 

The clustering and splitting steps of the algorithm define a mapping from HMM state to 

cluster index 

8 = y(s)    , (6) 

as well as the set of mixture components that will be used by each state, Q (s) = Q(g) . 

33 Reestimation 

The parameters are reestimated using the Baum-Welch algorithm. This step allows the 

codebooks to deviate from the initial values (see Figure lc) and achieve a better approxi- 

mation of the distributions. 

We shall refer to the Gaussian codebooks as genones1 and to the HMMs with arbitrary 

tying of Gaussian mixtures as genonic HMMs. Clustering of either phone or subphone 

units in HMMs has also been used in [12][13][14][15]. Mixture-weight clustering of dif- 



ferent HMM states can reduce the number of free parameters in the system and, poten- 

tially, improve recognition performance because of the more robust estimation. It cannot, 

however, improve the resolution with which the acoustic space is represented, since the 

total number of component densities in the system remains the same. In our approach, we 

use clustering to identify sets of subphonetic regions that will share mixture components. 

The subsequent steps of the algorithm increase the number of distinct densities in the sys- 

tem and provide the desired detail in the resolution. 

Reestimation of the parameters can be achieved using the standard Baum-Welch reestima- 

tion formulae (see, e.g., [2] for the case of tied-mixture HMMs). For arbitrary tying of 

mixture components and Gaussian component densities, the observation distributions 

become 

p(x,\s)  =     V   p(q\s)Ngq(xt;\igq,Zgq) , (7) 

where Ngq (xt; \i  , Lgq) is the q-th Gaussian of genone g. It can be easily verified that 

the Baum-Welch reestimation formulae for the means and the covariances become 

.5„?n t(j>q)xt 

H     = '-&U*  (8) 

5 2> 
and 

£    2>(/,*)(xl-fL„)(xl-AM) 
t„ = *Zl-y-L     , (9) 

E Ifl'M 

where the first summation is over all states Sj in the inverse image y~ (g) ofthegenonic 

index g. The accumulation weights in the equations above are 

2. This term should be partially attributed to IBM's fenones and CMU's senones. A genone is a set 
of Gaussians shared by a set of states and should not be confused with the word genome. 
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where (I  , £    are the initial mean and covariance, the summations in the denominator 

are over all HMM states and all mixture components in a particular genone, respectively, 

and the quantities a, (J), ß, (j) are obtained using the familiar forward and backward 

recursions of the Baum-Welch algorithm [16]. The reestimation formulae for the remain- 

ing HMM parameters—i.e. mixture weights, transition probabilities, and initial probabili- 

ties—are the same as those presented in [2]. 

To reduce the large amount of computation involved in evaluating Gaussian likelihoods 

during recognition, we have developed fast computation schemes that are described in 

Section 5. 

4 WORD RECOGNITION EXPERIMENTS 

We evaluated genonic HMMs on the Wall Street Journal (WSJ) corpus [17]. We used 

SRI's DECIPHER ™ continuous speech recognition system, configured with a six-feature 

front end that outputs 12 cepstral coefficients, cepstral energy, and their first- and second- 

order differences. The cepstral features are computed from an FFT filterbank. Context- 

dependent phonetic models were used, and the inventory of the triphones was determined 

by the number of occurrences of the triphones in the training data. In all of our experi- 

ments we used Gaussian distributions with diagonal covariance matrices as the mixture 

component densities. For fast experimentation, we used the progressive-search framework 

[18]. With this approach, an initial fast recognition pass creates word lattices for all sen- 

tences in the development set. These word lattices are used to constrain the search space in 

all subsequent experiments. In our development we used both the WSJO 5,000-word and 

the WSJ1 64,000-word portions of the database. We used the baseline bigram and trigram 

language models provided by Lincoln Laboratory: 5,000-word, closed-vocabulary3 and 

3. A closed-vocabulary language model is intended for recognizing speech that does not include 
words outside of the vocabulary. 



20,000-word open-vocabulary language models were used for the WSJO and WSJ1 exper- 

iments, respectively. The trigram language model was implemented using the N-best res- 

coring paradigm [19], by rescoring the list of the N-best sentence hypotheses generated 

using the bigram language model. 

In the remainder of this section, we present results that show how mixture tying affects 

recognition performance. We also present experiments that investigate other modeling 

aspects of continuous HMMs, including modeling multiple vs. single observation streams 

and modeling time-correlation using linear discriminant analysis. 

4.1 Degree of Mixture Tying 

To determine the effect of mixture tying on the recognition performance, we evaluated a 

number of different systems on both WSJO and WS Jl. Table 1 compares the performance 

and the number of free parameters of tied mixtures, phonetically tied mixtures, and 

genonic mixtures on a development set that consists of 18 male speakers and 360 sen- 

tences of the 5,000-word WSJO task. The training data for this experiment included 3,500 

sentences from 42 speakers. We can see that systems with a smaller degree of tying out- 

perform the conventional tied mixtures by 25%, and at the same time have a smaller num- 

ber of free parameters because of the reduction in the codebook size. 

The difference in recognition performance between PTM and genonic HMMs is, however, 

much more dramatic in the WSJ1 portion of the database. There, the training data con- 

sisted of 37,000 sentences from 280 speakers, and gender-dependent models were built. 

The male subset of the 20,000-word, November 1992 evaluation set was used, with a big- 

ram language model. Table 2 compares various degrees of tying by varying the number of 

genones used in the system. We can see that, because of the larger amount of available 

training data, the improvement in performance of genonic systems over PTM systems is 

much larger (20%) than in our 5,000-word experiments. Moreover, the best performance 

is achieved for a larger number of genones—1,700 instead of the 495 used in the 5,000- 

word experiments. These results are depicted in Figure 2. 



In Table 3 we explore the additional degree of freedom that genonic HMMs have over 

fully continuous HMMs, namely that states mapped to the same genone can have different 

mixture weights. We can see that tying the mixture weights in addition to the Gaussians 

introduces a significant degradation in recognition performance. This degradation 

increases when the features are modeled using multiple observation streams (see 

Section 4.2) and as the amount of training data and the number of genones decrease. 

4.2 Multiple vs. Single Observation Streams 

Another traditional difference between fully continuous and tied mixture systems is the 

independence assumption of the latter when modeling multiple speech features. Tied mix- 

ture systems typically model static and dynamic spectral and energy features as condition- 

ally independent observation streams, given the HMM state. The reason is that tied 

mixture systems provide a very coarse representation of the acoustic space, which makes 

it necessary to quantize each feature separately and artificially increase the resolution by 

modeling the features as independent. Then, the number of bins of the augmented feature 

is equal to the product of the number of bins of all individual features. The disadvantage 

is, of course, the independence assumption. When, however, the degree of tying is smaller, 

the finer representation of the acoustic space makes it unnecessary to improve the resolu- 

tion accuracy by modeling the features as independent, and the feature-independence 

assumption can be removed. This claim is verified experimentally in Table 4. The first row 

in Table 4 shows the recognition performance of a system that models the six static and 

dynamic spectral and energy features as independent observation streams. The second row 

shows the performance of a system that models the six features in a single stream. We can 

see that the performance of the two systems is similar. 

4.3 Linear Discriminant Features 

For a given HMM state sequence, the observed features at nearby frames are highly corre- 

lated. HMMs, however, model these observations as conditionally independent, given the 

underlying state sequence. To capture local time correlation, we used a technique similar 

to the one described in [10]. Specifically, we used a linear discriminant feature extracted 
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using a linear transformation of the vector consisting of the cepstral and energy features 

within a window centered around the current analysis frame. The discriminant transforma- 

tion was obtained using linear discriminant analysis [11] with classes defined as the HMM 

state of the context-independent phone. The state index assigned to each frame was deter- 

mined using the maximum a-posteriori criterion and the forward-backward algorithm. 

We found that the performance of the linear discriminant feature was similar to that of the 

original features, and that performance improves if the discriminant feature vector is used 

in parallel with the original cepstral features as a separate observation stream. From Table 

5, we can see that the linear cüscriminant feature reduced the error rate on the WSJ1 

20,000-word open-vocabulary male development set by approximately 7% using either a 

bigram or a trigram language model. 

The best-performing system with 1,700 genones and the linear discriminant feature was 

then evaluated on various test and development sets of the WSJ database using bigram and 

trigram language models. Our word recognition results, summarized in Table 6, are com- 

parable to the best reported results to date on these test sets [3] [4] [5]. 

5 REDUCING GAUSSIAN COMPUTATIONS 

Genonic HMM recognition systems require evaluation of very large numbers of Gaussian 

distributions, and can be very slow during recognition. In this section, we will show how 

to reduce this computation while maintaining recognition accuracy. For simplicity, we use 

a baseline system in this section that has 589 genones, each with 48 Gaussian distribu- 

tions, for a total of 28,272 39-dimensional Gaussians. This system has a smaller number 

of genones than the best-performing system of Section 4 and no context-dependent model- 

ing across words. It runs much faster than our most accurate system, but its performance 

of 13.4% word error on ARPA's November 1992,20,000-word evaluation test set using a 

bigram language model is slightly worse than our best result of 11.4% on this test set when 

the linear discriminant feature is not used (Table 2). Decoding time from word lattices is 

12.2 times slower than real time on an R4400 processor. Full-grammar decoding time 

would be much slower.4 Since the decoding time of a genonic recognition system such as 

li 



this one is dominated by Gaussian evaluation, reducing the number of Gaussians that 

require evaluation at each frame is critical for both fast experimentation and practical 

applications of the technology. We have explored two methods of reducing Gaussian com- 

putation: Gaussian clustering and Gaussian shortlists. 

5.1 Gaussian Clustering 

The number of Gaussians per genone can be reduced using clustering. Specifically, we 

used an agglomerative procedure to cluster the component densities within each genone to 

a smaller number. We considered several criteria that were used in [20], like an entropy- 

based and a generalized likelihood-based distortion measure. We found that the entropy- 

based measure worked better. This criterion is the continuous-density analog of the 

increase in weighted-by-counts entropy of the discrete HMM mixture-weight distributions 

that we used in the agglomerative clustering step of the genonic HMM system construc- 

tion. Specifically, the cost of pooling two Gaussian densities—N{ {xt; \i., L.) and 

Nj (xt; jly., Lj) —is the difference between the entropy of the pooled Gaussian and the 

sum of the entropies of the initial densities, all weighted by the number of samples used to 

estimate each density: 

d(Uj) = ^P'log|E/uJ -I'logpJ - |log|Ej   , (11) 

where nt, rij are the number of samples used to estimate the initial densities and 

Nt vj (xi 1 V-i up z« up is to pooled density. 

In Table 7 we can see that the number of Gaussians per genone can be reduced by a factor 

of three by first clustering and then performing one additional iteration of the Baum- 

Welch algorithm. The table also shows that clustering followed by additional training iter- 

ations gives better accuracy than directly training a system with a smaller number of 

Gaussians (Table 7, Baseline 2). This is especially true as the number of Gaussians per 

genone decreases. 

4. In the remainder of this section, all decoding times are from word lattices. 
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5.2 Gaussian Shortlists 

Although clustering reduces the total number of Gaussians significantly, all the Gaussians 

belonging to genones used by HMM states that are in the Viterbi beam search must be 

evaluated at each frame during recognition. This evaluation includes a large amount of 

redundant computation; we have verified experimentally that the majority of the Gauss- 

ians will yield negligible probabilities. As a result, after reducing the Gaussians by a factor 

of three using clustering, the decoding time from word lattices is still 7.9 times slower 

than real time. 

We have developed a method similar to the one introduced by Bocchieri [21] for prevent- 

ing a large number of unnecessary Gaussian computations. Our method is to partition the 

acoustic space and for each partition to build a Gaussian shortlist, a list which specifies 

the subset of the Gaussian distributions expected to have high likelihood values in a given 

region of the acoustic space. First, vector quantization (VQ) is used to subdivide the 

acoustic space into VQ regions. Then, one list of Gaussians is created for each combina- 

tion of VQ region and genone. The lists are created empirically, by considering a suffi- 

ciently large amount of speech data. For each acoustic observation, each Gaussian 

distribution is evaluated. Those distributions whose likelihoods are within a predeter- 

mined fraction of the most likely Gaussian are added to the list for that VQ region and 

genone. This scheme will result in some empty or too short lists. We have found that 

empty lists can cause a degradation in recognition performance, which can be avoided by 

enforcing a minimum shortlist size—we add to empty shortlists those Gaussians of the 

genone that achieve the highest likelihood for some observations quantized to the VQ 

region. 

When recognizing speech, each observation is vector quantized, and only those Gaussians 

which are found in the shortlist are evaluated. This technique has allowed us to reduce by 

more than a factor of five the number of Gaussians considered each frame when applied to 

unclustered genonic recognition systems. Here we apply Gaussian shortlists to the clus- 
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tered system described in Section 5.1. Several methods for generating improved, smaller 

Gaussian shortlists are discussed and applied to the same system. 

Table 8 shows the word error rates for shortlists generated by a variety of methods. 

Through these methods, we reduced the average number of Gaussian distributions evalu- 

ated for each genone from 18 to 2.48 without compromising accuracy. The various short- 

lists tested were generated in the following ways: 

• None: No shortlist was used. This is the baseline case from the clustered system 

described above. All 18 Gaussians are evaluated whenever a genone is active. 

• 12D-256: To partition the acoustic space, the vector of 12 cepstral coefficients is quan- 

tized using a VQ codebook with 256 codewords. With unclustered systems, this 

method generally achieves a 5:1 reduction in Gaussian computation. In this clustered 

system, only a 3:1 reduction was achieved, most likely because the savings from clus- 

tering and Gaussian shortlists overlap. The average shortlist length was 6.08. 

• 39D-256: The cepstral codebook that partitions the acoustic space in the previous 

method ignores 27 of the 39 feature dimensions. By using a 39-dimensional, 256- 

codeword VQ codebook, we created better-differentiated acoustic regions and reduced 

the average shortlist length to 4.93. 

• 39D-4096-min3: We further decreased the number of Gaussians per region by shrink- 

ing the size of the regions. Here we used a single-feature VQ codebook with 4096 

codewords, and reduced the average shortlist size to 3.68. For such a large codebook, 

vector quantization can be accelerated using a binary tree VQ fastmatch [22]. The min- 

imum shortlist size was 3. 

• 39D-4096-minl: In our experiments with 48 Gaussians/genone, we found it important 

to ensure that each list contained a rninimum of three Gaussian densities. With our cur- 

rent clustered systems we found that we can achieve similar recognition accuracy with 

a minimum shortlist size of one. As shown in Table 8, this technique results in lists with 

an average of 2.48 Gaussians per genone, without degradation in recognition accuracy. 
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Our results on the computational reduction on the evaluation of Gaussian likelihoods are 

summarized in Figure 3. We started with a speech recognition system with 48 Gaussians 

per genone (a total of 28,272 Gaussian distributions) that evaluated 14,538 Gaussian like- 

lihood scores per frame and achieved a 13.4% word error rate ninning 12.2 times slower 

than real time on word lattices. Combining the clustering and Gaussian shortlist tech- 

niques described in Section 5, we managed to decrease the average number of Gaussians 

contained in each list to 2.48. As a result, the system's computational requirements were 

reduced to 732 Gaussian evaluations per frame, resulting in a system with word error of 

13.5%, running at 2.5 times real time from word lattices. 

6 CONCLUSIONS 

An algorithm has been developed that balances the trade-off between resolution and train- 

ability. Our method generalizes the tying of mixture components in continuous HMMs 

and achieves the degree of tying that is best suited to the available training data and the 

size of the recognition problem that we have in hand. We demonstrated in the large- 

vocabulary WSJ database that by selecting the appropriate degree of tying, the word-error 

rate can be decreased by 25% over conventional tied-rnixture HMMs. To cope with the 

increase in computational requirements compared to tied-mixture HMMs, we have pre- 

sented fast algorithms for evaluating the likelihoods of Gaussian mixtures. The number of 

Gaussians evaluated per frame was reduced by a factor of 20 and the decoding time by a 

factor of 6. 
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TABLES 

System 
Number of 
Genones 

Gaussians per 
genone 

Total 
Parameters 
(thousands) Word Error (%) 

TM 1 256 5,126 14.1 

PTM 40 100 2,096 11.6 

Genones 495 48 1,530 10.6 
TABLE 1. Comparison of various degrees o f tying on a 5,000-word WS JO 

development set 

PTM Genonic HMMs 

Number of 
Genones 40 760 1250 1700 2400 

Word error rate 
<%) 14.7 12.3 11.8 11.4 12.0 

TABLE 2. Recognition performance on the male subset of 20,000-word WSJ 
November 1992 ARPA evaluation set for various numbers of codebooks using a 

bigram language model 

Word Error (%) 

Recognition 
Task 

Number of 
Genones 

Number of 
Streams Tied Untied 

5KWSJ0 495 6 9.7 7.7 

20KWSJ1 1,700 1 12.2 11.4 
TABLE 3. Comparison of state-specific vs. genone-specific mixture weights for 

different recognition tasks 
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System Sub (%) Del (%) Ins (%) Word Error (%) 

6 streams 9.0 0.8 2.5 12.3 

1 stream 8.7 0.8 2.3 11.8 

TABLE 4. Comparison of modeling using 6 versus 1 observation streams for the 6 
underlying features on the male subset of 20,000-word WSJ November 1992 

evaluation set with a bigram language model 

System Bigram LM TrigramLM 

1,700 Genones 20.5 17.0 

+ Linear Discriminants 19.1 15.8 

TABLE 5. Word error rates (%) on the 20,000-word open i-vocabulary male 
development set of the WS Jl corpus with and without linear discriminant 

transformations 

Grammar 

Bigram 

Trigram 

Nov92 

11.2 

9.3 

Test set 

WSJ1 Dev 

16.6 

13.6 

Nov93 

16.2 

13.6 

TABLE 6. Word error rates on the November 1992 evaluation, the WS Jl 
development, and the November 1993 evaluation sets using 20,000-word open- 

vocabulary bigram and trigram language models 

System 
Gaussians 

per Genone 
Word Error 

(%) 

Baseline 1 48 13.4 

B aseline 1+Clustering 18 14.2 

above+Retraining 18 13.6 

Baseline2 25 14.4 

TABLE 7. Improved training of systems with fewer Gaussians by clustering from 
a larger number of Gaussians 
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Shortlist Shortlist Length 
Gaussians 

Evaluated per 
Frame 

Word Error 
(%) 

none 18 5459 13.6 

12D-256 6.08 1964 13.5 

39D-256 4.93 1449 13.5 

39D-4096-min3 3.68 1088 13.6 

39D-4096-minl 2.48 732 13.5 

TABLE 8. Word error rates and Gaussians evaluated, for a variety of Gaussian 
shortlists 
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FIGURES 

a. CLUSTERING 

b. SPLITTING 

V 

c. REESTIMATION 

FIGURE 1. Construction of genonic mixtures. Arrows represent the stochastic 
mappings from state to mixture component. Ellipses represent the sets of 
Gaussians in a single genone. 
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FIGURE 2. Recognition performance for different degrees of tying on the 5,000- 
word WSJO and 20,000-word WSJl tasks of the WSJ corpus. 
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A. Unclustered system 
B. Clustered system 
C. Clustered system using various shortlists 
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FIGURE 3. Word error rate as a function of the decoding time for the baseline 
system (A) and systems with fast Gaussian evaluation schemes (B and C). 
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USING MIXTURE TYING AND CONSISTENCY MODELING 
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ABSTRACT 

Improved acoustic modeling can significantly decrease the error 
rate in large-vocabulary speech recognition. Our approach to the 
problem is twofold. We first propose a scheme that optimizes the 
degree of mixture tying for a given amount of training data and 
computational resources. Experimental results on the Wall Street 
Journal (WSJ) Corpus show that this new form of output distri- 
bution achieves a 25% reduction in error rate over typical tied- 
mixture systems. We then show that an additional improvement 
can be achieved by modeling local time correlation with linear 
discriminant features. 

1. INTRODUCTION 

To improve the acoustic-modeling component of SRI's DECI- 
PHER™ speech recognition system, our research has focused on 
two main directions. The first is to decrease the degree of mix- 
ture tying in the mixture observation densities, since continuous- 
density hidden Markov models (HMMs) have recently been 
shown to outperform discrete-density and tied-mixture HMMs 
[16]. The second is the removal of the simplifying output inde- 
pendence assumption commonly used in HMMs. 

Tied mixtures (TM) achieve robust estimation and efficient com- 
putation of the density likelihoods. However, the typical mixture 
size used in TM systems is small and does not provide a good 
representation of the acoustic space. Increasing the number of 
the mixture components (the codebook size) is not a feasible 
solution, since the mixture-weight distributions become too 
sparse. In large-vocabulary problems, where a large number of 
basic HMMs is used and each has only a few observations in the 
training data, sparse mixture-weight distributions cannot be esti- 
mated robustly and are expensive to store. To solve this problem, 
we follow the approach of simultaneously reducing the code- 
book size and increasing the number of different sets of mixture 
components (or codebooks). This procedure reduces the degree 
of tying, and the two changes can be balanced so that the total 
number of component densities in the system is effectively 
increased. The mapping from HMM states to codebooks can be 
determined using clustering techniques. Since our algorithm 
transforms a "less" continuous, or tied-mixture system, to a 
"more" continuous one, it has enabled us to investigate a number 
of traditional differences between tied-mixture and fully continu- 
ous HMMs, including codebook size and modeling of the speech 
features using multiple vs. single observation streams. 

Our second main research direction is focused on removing the 
simplifying assumption used in HMMs that speech features from 
different frames are statistically independent given the underly- 
ing state sequence. In this paper we will deal with the modeling 
of the local temporal dependencies, that is, ones that span the 
duration of a phonetic segment. We will show through the use of 
recognition experiments and information theoretic criteria that 
achieving decorrelation of the speech features is not a sufficient 
condition for the improvement in recognition performance. To 
achieve the latter, it is necessary to improve the discrimination 
power of the output distributions through the use of new infor- 
mation. Local correlation modeling has recently been incorpo- 
rated in our system through the use of linear discriminant 
features, and has reduced the word error rate by 7% on the Wall 
Street Journal (WSJ) corpus. 

The remainder of the paper is organized as follows: in Section 2 
we present the general form of mixture observation distributions 
used in HMMs, we discuss variations of this form that have 
appeared in the literature, and present an algorithm that enables 
us to adjust the mixture tying for optimum recognition perfor- 
mance. In Section 3 we deal with the problem of local time-cor- 
relation modeling: we comment on the potential improvement in 
recognition performance by incorporating conditional distribu- 
tions, and describe the type of local consistency modeling cur- 
rently used in our system. In Section 4 we present experimental 
results on the WSJ Corpus. These results are mainly a by-product 
of the system development for the November 1993 ARPA evalu- 
ation [16]. Finally, we conclude in Section 5. 

2. GENONIC MIXTURES 

A typical mixture observation distribution in an HMM-based 
speech recognizer has the form 

p(xt\s) = 

«eTW 
P(q\s)f{xt\q) (1) 

where s represents the HMM state, x, the observed feature at 
frame t, and Q(s) the set of mixture-component densities used in 
state s. We will use the term codebook to denote the set Q(s). The 
stream of continuous vector observations can be modeled 
directly using Gaussians or other types of densities in the place 
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of/fr, I q), and HMMs with this form of observation distributions 
are known as continuous HMMs [19]. 

Various forms of tying have appeared in the literature. When 
tying is not used, the sets of component densities are different for 
different HMM states—that is, Q(s)*Q(s') if s * s'. We will 
refer to HMMs that use no sharing of mixture components as 
fully continuous HMMs. The other extreme is when all HMM 
states share the same set of mixture components—that is, Q(s) = 
Q is independent of the state s. HMMs with this degree of shar- 
ing were proposed in [8], [2] under the names Semi-Continuous 
and Tied-Mixture (TM) HMMs. Tied-mixture distributions have 
also been used with segment-based models, and a good review is 
given in [11]. Intermediate degrees of tying have also been 
examined. In phone-based tying, described in [17], [13], only 
HMM states that belong to allophones of the same phone share 
the same mixture components—that is, Q(s) = Q(s') if s and s' 
are states of context-dependent HMMs with the same center 
phone. We will use the term phonetically tied to describe this 
kind of tying. Of course, for context-independent models, pho- 
netically tied and fully continuous HMMs are equivalent. How- 
ever, phonetically tied mixtures (PTM) did not significantly 
improve recognition performance in previous work. 

The continuum between fully continuous and tied-mixture 
HMMs can be sampled at any other point The choice of phonet- 
ically tied mixtures, although linguistically motivated, is some- 
what arbitrary and may not achieve the optimum trade-off 
between resolution and trainability. We have recently introduced 
an algorithm [4] that allows as to select the degree of tying that 
attains optimum recognition performance for the given computa- 
tional resources. This algorithm follows a bootstrap approach 
from a system that has a higher degree of tying (i.e.. a TM or a 
PTM system), and progressively unties the mixtures using three 
steps: clustering, splitting and pruning, and reestimation. 

2.1. Clustering 

The HMM states of all allophones of a phone are clustered fol- 
lowing an agglomerative procedure. The clustering is based on 
the weighted-by-counts entropy of the mixture-weight distribu- 
tions [12]. The clustering procedure partitions the set of HMM 
states S into disjoint sets of states 

S = S1 u52u uS. (2) 

The same codebooks will be used for all HMM states belonging 
to a particular cluster S,. 

2.2. Splitting and Pruning 

After determination of the sets of HMM states that will share the 
same codebook, seed codebooks for each set of states that will be 
used by the next reestimation phase are constructed. These seed 
codebooks can be constructed by either one or a combination of 
two procedures: 

•    Identifying the most likely subset of mixture components of 
the boot system for each cluster of HMM states 5, and using 

these subsets Q (5() c Q (5) as seed codebooks for the 
next phase 

• Copying the original codebook multiple times (one for each 
cluster of states) and performing one iteration of the Baum- 
Welch algorithm over the training data with the new tying 
scheme; the number of component densities in each code- 
book can then be reduced using clustering [10] 

2.3. Reestimation 

The parameters are reestimated using the Baum-Welch algo- 
rithm. This step allows the codebooks to deviate from the initial 
values and achieve a better approximation of the distributions. 

We will refer to the Gaussian codebooks as genones and to the 
HMMs with arbitrary tying of Gaussian mixtures as genonic 
HMMs. Clustering of either phone or subphone units in HMMs 
has also been used in [18], [12], [1], [9]. Mixture-weight cluster- 
ing of different HMM states can reduce the number of free 
parameters in the system and, potentially, improve recognition 
performance because of the more robust estimation. It cannot, 
however, improve the resolution with which the acoustic space is 
represented, since the total number of component densities in the 
system remains the same. In our approach, we use clustering to 
identify sets of subphonetic regions that will share mixture com- 
ponents. The later steps of the algorithm, where the original set 
of mixture components is split into multiple overlapping genones 
and each one is reestimated using data from the states belonging 
to the corresponding cluster, effectively increase the number of 
distinct densities in the system and provide the desired detail in 
the resolution. 

Reestimation of the parameters can be achieved using the stan- 
dard Baum-Welch reestimation formulae for HMMs with Gauss- 
ian mixture observation densities, since tying does not alter their 
form, as pointed out in [21]. During recognition, and to reduce 
the large amount of computation involved in evaluating Gaussian 
likelihoods, we can use the fast computational techniques 
described in [15]. 

In place of the component densities fix, I q) we use exponentially 
weighted Gaussian distributions: 

p(x,\s) =    Y   pfo|*)[JV(*,;|i,,I,)]a (3) 

where the exponent a £ 1 is used to reduce the dynamic range 
of the Gaussian scores (that would, otherwise, dominate the mix- 
ture probabilities p(q / s)) and also to provide a smoothing effect 
at the tails of the Gaussians. 

3. TIME CORRELATION MODELING 

For a given HMM state sequence, the observed features at 
nearby frames are highly correlated. Modeling time correlation 
can significantly improve speech recognition performance for 
two reasons. First, dynamic information is very important [6], 
and explicit time-correlation modeling can potentially outper- 
form more traditional and simplistic approaches like the incorpo- 
ration of cepstral derivatives as additional feature streams. 
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Second, sources of variability—such as microphone, vocal tract 
shape, speaker dialect, and speech rate—will not dominate the 
likelihood computation during Viterbi decoding by being res- 
cored at every frame. We will call techniques that model such 
temporal dependencies consistency modeling. 

The output-independence assumption is not necessary for the 
development of the HMM recognition (Viterbi) and training 
(Baum-Welch) algorithms. Both of these algorithms can be mod- 
ified to cover the case when the features depend not only on the 
current HMM state, but also on features at previous frames [20]. 
However, with the exception of the work reported in [3] that was 
based on segment models, explicit time-correlation modeling has 
not improved the performance of HMM-based speech 
recognizers. 

To investigate these results, we conducted a pilot study to esti- 
mate the potential improvement in recognition performance 
when using explicit correlation modeling over more traditional 
methods like time-derivative information. We used information- 
theoretic criteria and measured the amount of mutual informa- 
tion between the current HMM state and the cepstral coefficients 
at a previous "history" frame. The mutual information was 
always conditioned on the identity of the left phone, and was 
measured under three different conditions: 

• I(hj)—mutual information between the current HMM state s 
and a cepstral coefficient h at the history frame; a single, left- 
context-dependent Gaussian distribution for the cepstral 
coefficient at the history frame was hypothesized, 

• I(h.s/c)—conditional mutual information between the cur- 
rent HMM state s and a cepstral coefficient h at the history 
frame when the corresponding cepstral coefficient c of the 
current frame is given; a left-context-dependent, joint Gauss- 
ian distribution for the cepstral coefficients at the current and 
the history frames was hypothesized, 

• I(h,slc,d)—same as above, but conditioned on both the ceps- 
tral coefficient c and its corresponding derivative d at the 
current frame. 

The results are summarized in Table 1 for history frames with 
lags of 1,2,4 and a variable one. In the latter case, we condition 
the mutual information on features extracted at the last frame t0 

of the previous HMM state, as located by a forced Viterbi align- 
ment. We can see from this table that in the unconditional case, 
the cepstral coefficients at frames closer to the current one pro- 
vide more information about the identity of the current phone. 
However, the amount of additional information that these coeffi- 
cients provide when the knowledge of the current cepstra and 
their derivatives is taken into account is smaller. The additional 
information in this case is larger for lags greater than 1, and is 
maximum for the variable lag. 

These measurements predict that the previous frame's observa- 
tion is not the optimal frame to use when conditioning a state's 
output distribution. To verify this, and to actually evaluate recog- 
nition performance, we incorporated tune-correlation modeling 
in an HMM system with genonic mixtures. Specifically, we gen- 
eralized the Gaussian mixtures to mixtures of conditional Gauss- 
ians, with the current cepstral coefficient x, conditioned on the 
corresponding cepstral coefficient xt of the history frame tg. 

Lag'o 0 1 2 4 Variable 

Kk s) 0.28 Ö.27 Ö.25 Ö.19 Ö.25 

I(/l, i 1 c) 0 0.13 0.15 0.15 0.21 

I(A, s\c,d) 0 0.11 0.14 0.13 0.20 

Table 1. Mutual information (in bits) between HMM state s at 
time / and cepstral coefficient h at time t-t0 for various lags; 
included is the conditional mutual information when the 
corresponding cepstral coefficient and its derivative at time t are 
given 

(4) 

We either replaced the original unconditional distributions of the 
cepstral coefficients and their derivatives with the conditional 
Gaussian distributions, or we used them in parallel as additional 
observation streams. The results on the 5,000-word recognition 
task of the WSJ0 corpus are summarized in Table 2 for fixed-lag 
history frames. We can see mat the recognition results are in per- 
fect agreement with the behavior predicted by the mutual-infor- 
mation study. The improvements in recognition performance 
over the system that does not use conditional distributions are 
actually proportional to the measured amount of conditional 
mutual information at the various history frames. However, these 
improvements are small and statistically insignificant, and indi- 
cate that the derivative features effectively model the local 
dynamics. 

Delay 

Word Error- 

Conditional only (%) 

Word Error— 

Both (%) I(h,s\c,d) 

Ö 10.32 - 0 
1 10.98 10.19 0.11 

2 10.50 9.65 0.14 

4 10.32 9.83 0.13 

Table 2. Recognition rates on 5,000-word WSJ corpus with 
conditional distributions either replacing the unconditional ones 
or used in parallel 

Instead of using conditional Gaussian distributions, one can 
alternatively choose to use features obtained with linear discrim- 
inants. Local time correlation can be modeled by estimating the 
transformations over multiple consecutive frames [5],[7]. This 
approach has the additional advantage that it is computationally 
less expensive, since the discriminant transformations can be 
computed in the recognizer front end and only once at each 
frame. However, as we will see in the following section, linear 
discriminants gave only moderate improvements in recognition 
performance, and this is consistent with the conditional Gaussian 
results of this section. From the conditional information mea- 
surements that we have presented, we can see that in order to 
provide additional information to the recognizer we must condi- 
tion the output distributions not only on a previous history frame, 
but also on the start time of the current subphonetic segment, and 
this is an area that we are currently investigating. 
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4. EXPERIMENTAL RESULTS 

We used the algorithms described in this paper on the 5,000- and 
64,000-word recognition tasks of the WSJ corpus. We used the 
progressive-search framework [14] for fast experimentation. 
With this approach, an initial fast recognition pass creates word 
lattices for all sentences in the development set These word lat- 
tices are used to constrain the search space in all subsequent 
experiments. In our development we used both the WSJO 5,000 
word and the WSJ1 64,000 word portions of the database, and 
the baseline bigram and trigram language models provided by 
Lincoln Laboratory. 

4.1. Degree of Mixture Tying 

To determine the effect of mixture tying on the recognition per- 
formance, we evaluated a number of different systems on both 
WSJO and WSJ1. Table 3 compares the performance and the 
number of free parameters of tied mixtures, phonetically tied 
mixtures, and genonic mixtures on a development set that con- 
sists of 18 male speakers and 360 sentences of the 5,000-word 
WSJO task. The training data for this experiment included 3,500 
sentences from 42 speakers. We can see that systems with a 
smaller degree of tying outperform the conventional tied mix- 
tures by 25%, and at the same time have a smaller number of free 
parameters because of the reduction in the codebook size. 

System 
Number of 
Genones 

Gaussians 
per genone 

Total 
Parameters 
(thousands) 

Word 
Error (%) 

TM 1 256 5,126 14.1 

PTM 40 100 2,096 11.6 

Genones 495 48 1.530 10.6 

Table 3. Comparison of various degrees of tying on 5,000-word 
WSJ development set 

The difference in recognition performance between PTM and' 
genonic HMMs with smaller tying is, however, much more dra- 
matic in the WSJ1 portion of the database. The training data con- 
sisted of 37,000 sentences from 280 speakers, and gender- 
dependent models were built. The male subset of the 20,000- 
word November 1992 evaluation set was used, with a bigram 
language model. Table 4 compares various degrees of tying by 
varying the number of genones used in the system. We can see 
that, because of the larger amount of available training data, the 
improvement in performance of genonic systems over PTM sys- 
tems is much larger (20%) than in our 5.000-word experiments. 
Moreover, the best performance is achieved for a larger number 
of genones—1,700 instead of the 495 used in the 5.000-word 
experiments. These results are depicted in Figure 1. 

PTM Genonic HMMs 

Number of 
Genones 40 760 1250 1700 2400 

Word error 
rate (%) 14.7 12.3 11.8 11.4 12.0 

Table 4. Recognition performance on the male subset of 20,000- 
word WSJ November 1992 ARPA evaluation set for various 
numbers of codebooks using a bigram language model. 

1000 1500 
Number of Genones 

Figure 1: Recognition performance for different degrees of tying 
on the 5,000-word WSJO and 20,000-word WSJ1 tasks of the 
WSJ corpus 

In Table 5 we explore the additional degree of freedom that 
genonic HMMs have over fully continuous HMMs, namely that 
states mapped to the same genone can have different mixture 
weights. We can see that tying the mixture weights in addition to 
the Gaussians introduces a significant degradation in recognition 
performance. This degradation increases when the features are 
modeled using multiple observation streams (see following sec- 
tion) and as the amount of training data and the number of 
genones decrease. 

' * Number 
of Genones 

Number of 
Streams 

Word Error (%) 
Tied       Untied 

5KWSJ0 495 6 9.7 7.7 

20KWSJ1 1,700 1 12.2 11.4 

Table 5. Comparison of state-specific vs. genone-specific 
mixture weights for different recognition tasks 
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4.2. Multiple vs. Single Observation Streams 

Another traditional difference between fully continuous and tied 
mixture systems is the independence assumption of the latter 
when modeling multiple speech features. Tied mixture systems 
typically model static and dynamic spectral and energy features 
as conditionally independent observation streams given the 
HMM state, because tied mixture systems provide a very coarse 
representation of the acoustic space. It is, therefore, necessary to 
"quantize" each feature separately and artificially increase the 
resolution by modeling the features as independent: the number 
of "bins" of the augmented feature is equal to the product of the 
number of "bins" of all individual features. The disadvantage is, 
of course, the independence assumption. When, however, the 
degree of tying is smaller, the finer representation of the acoustic 
space makes it unnecessary to artificially improve the resolution 
accuracy by modeling the features as independent Hence, for 
systems that are loosely tied we can remove the feature-indepen- 
dence assumption. This claim is verified experimentally in Table 
6. The first row shows the recognition performance of a system 
that models the six static and dynamic spectral and energy fea- 
tures used in DECIPHER™ as independent observation streams. 
The second row shows the performance of a system that models 
the six features in a single stream. We can see that the perfor- 
mance of the two systems is similar. 

removed the DC offset from the waveforms, and reestimated the 
models using the exact procedure followed during the develop- 
ment of the system used in the November 1993 evaluation. From 
Table 6, we can see that the linear discriminant feature reduced 

System Sub (%) Del(%) Ins(%) 
Word 

Error (%) 

6 streams 9.0 0.8 25 12.3 

1 stream 8.7 0.8 2.3 11.8 

Table 6. Comparison of modeling using 6 versus 1 observation 
streams for 6 underlying features on the male subset of 20,000- 
word WSJ November 1992 evaluation set with a bigram 
language model 

4.3. Linear Discriminant Features 

To capture local time correlation we used a linear discriminant 
feature extracted using a transformation of the features within a 
window around the current frame. The discriminant transforma- 
tion was obtained using linear discriminant analysis with classes 
defined as the HMM state of the context-independent phone. The 
state index that was assigned to the frame was determined using 
the maximum a-posteriori criterion and the forward-backward 
algorithm. 

We found that the performance of the linear discriminant feature 
was similar to that of the original features. However, we found 
that an improvement in performance can be obtained if the dis- 
criminant features are used in parallel with the original features. 
A genonic HMM system with 1,700 genones and linear discrimi- 
nants as an additional feature was evaluated on the 20,000-word 
open-vocabulary November 1993 ARPA evaluation set It 
achieved word-error rates of 16.5% and 14.5% with the standard 
bigram and trigram language models, respectively. These results, 
however, were contaminated by the presence of a large DC offset 
in most of the waveforms of the phase 1 WSJ1 corpus. We later 

System Bigram IM. Trigram LM 

1.700 Genones 20.5 17.0 

+ Linear Discriminants 19.1 15.8 

Table 7. Word error rates (%) on the 20.000-word open- 
vocabulary male development set of the WSJ1 corpus with and 
without linear discriminant transformations 

the error rate on the WSJ1 20,000-word open-vocabulary male 
development set by approximately 7% using either a bigram or a 
trigram language model. Table 4 presents the results of the sys- 
tem with linear discriminants on various test and development 
sets. 

Test set 

Grammar Nov92 WSJIDev Nov93 

Bigram 11.2 16.6 16.2 

Trigram 9.3 13.6 13.6 

Table 8. Word error rates on the November 1992 evaluation, the 
WSJ1 development, and the November 1993 evaluation sets 
using 20,000-word open-vocabulary bigram and trigram 
language models 

5. CONCLUSIONS 

New acoustic modeling techniques significantly decrease the 
error rate in large-vocabulary continuous speech recognition. 
The genonic HMMs balance the trade-off between resolution and 
trainability, and achieve the degree of tying that is best suited to 
the available training data and computational resources. For 
example, one can decrease the computational load by decreasing 
the number of genones (i.e., increasing the degree of tying) with 
a small penalty in recognition performance [15]. Our results on 
the various test sets represent state-of-the-art recognition perfor- 
mance on the 20,000-word open-vocabulary WSJ task. 
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ABSTRACT 

In addressing the problem of achieving high-accuracy real-time 
speech recognition systems, we focus on recognizing speech from 
ARPA's 20.000-word Wall Street Journal (WSJ) task, using 
current UNIX workstations. We have found that our standard 
approach—using a narrow beam width in a Viterbi search for 
simple discrete-density hidden Markov models (HMMs)—works 
in real time with only very low accuracy. Our most accurate 
algorithms recognize speech many times slower than real time. 
Our (yet unattained) goal is to recognize speech in real time at or 
near full accuracy. 

We describe the speed/accuracy trade-offs associated with several 
techniques used in a one-pass speech recognition framework: 

• Trade-offs associated with reducing the acoustic modeling 
resolution of the HMMs (e.g.. output-distribution type, 
number of parameters, cross-word modeling) 

• Trade-offs associated with using lexicon trees, and 
techniques for implementing full and partial bigram 
grammars with those trees 

• Computation of Gaussian probabilities are the most time- 
consuming aspect of our highest accuracy system, and 
techniques allowing us to reduce the number of Gaussian 
probabilities computed with little or no impact on speech 
recognition accuracy. 

Our results show that tree-based modeling techniques used with 
appropriate acoustic modeling approaches achieve real-time 
performance on current UNIX workstations at about a 30% error 
rate for the WSJ task. The results also show that we can 
dramatically reduce the computational complexity of our more 
accurate but slower modeling alternatives so that they are near the 
speed necessary for real-time performance in a multipass search. 
Our near-future goal is to combine these two technologies so that 
real-time, high-accuracy large-vocabulary speech recognition can 
be achieved. 

(WSJ) speech corpus. All of the speed and performance data 
given in this paper are results of recognizing 169 sentences from 
the four male speakers that comprise ARPA's November 1992 
20,000-word vocabulary evaluation set Our best performance on 
these data is 8.9% (10.3% using bigram language models). Our 
standard implementation for this system would run approximately 
100 times slower than real time.1 Both these systems use beam- 
search techniques for finding the highest-scoring recognition 
hypothesis. 

Our most accurate systems are those that use HMMs with genonic 
mixtures as observation distributions [3]. Genonic mixtures 
sample the continuum between fully continuous and tied-mixture 
HMMs at an arbitrary point and therefore can achieve an 
optimum recognition performance given the available training 
data and computational resources. In brief, genonic systems are 
similar to fully continuous Gaussian-mixture HMMs, except that 
instead of each state having its own set of Gaussian densities, 
states are clustered into genones that share these Gaussian 
codebooks. Each state, however, can have its own set of mixture 
weights used with the Gaussian codebook to form its own unique 
observation distribution. All the genonic systems discussed in this 
paper use a single 39-dimensional observation composed of the 
speech cepstrum and its first and second derivatives, and the 
speech energy and its first and second derivatives. All Gaussians 
have diagonal covariance matrices. 

2. MODELING TRADE-OFFS 

The speed/accuracy trade-off of our speech recognition systems 
can be adjusted in several ways. The standard approaches are to 
adjust the beam width of the Viterbi search and to change the 

1. INTRODUCTION 

Our techniques for achieving real-time, high-accuracy large- 
vocabulary continuous speech recognition systems focus on the 
task of recognizing speech from ARPA's Wall Street Journal 

1- We define real-time systems as those that process 
1 second of speech per second 



output-distribution modeling technique. Table 1 shows, for 3. LEXICON TREES 

System Type Cross-Word 
Modeling 

Word 
Error 
(%) 

Lattice 
Search 
Speed 

Uenone yes 11.6 5Ü.4 
Genone no 13.4 19.8 

Phonetically Tied 
Mixtures 

yes 13.9 43.9 

Phonetically Tied 
Mixtures 

no 16.6 6.8 

VQ no 19.2 -1 

Table 1: Effect of model type on speed and accuracy 

instance, that eliminating cross-word modeling can significantly 
improve the speed of our recognition systems at about a 20% cost 
in word error. In this table, lattice speed refers to recognition 
accuracy when decoding from precomputed word lattices [8]. That 
is, this is only performing a subset of the search. Actual full 
grammar recognition time could be from a factor of 3 to an order 
of magnitude higher. However, it is useful to compare relative 
lattice decoding speeds from the various techniques. 

A technique frequently used at SRI to achieve relatively fast 
speech recognition demonstrations is to downgrade our acoustic 
modeling by implementing a discrete density (VQ) HMM system 
without cross-word acoustic modeling. This system is then 
searched using a Viterbi search with a small beam width. Table 2 
shows the full grammar speed accuracy trade-off when modifying 
the beam width if a Silicon Graphics Incorporated2 (SGI) UNIX 
workstation with a 150-MHz MIPS R4400 CPU3 is used to 

Beam 
Width 

Word 
Error 
(%) 

Hypotheses 
per Frame 

Full 
Search 
Speed 

600 29.5 981 3.2 
700 21.5 3089 8.3 
800 19.2 7764 16.0 

We explored the use of lexicon trees as a technique for speeding 
up the decoding times for all modeling techniques. Lexicon trees 
represent the phonetics of the recognition vocabulary as a tree 
instead of as a list of pronunciations (lists of phones). With a tree 
representation, words starting with the same phonetic units share 
the computation of phonetic models. This technique has been used 
by others, including the IBM [10], Phillips [7], and CMU groups, 
and it is also currently used at LIMSI. Because of the large amount 
of sharing, trees can drastically reduce the amount of computation 
required by a speech recognition system. However, lexicon trees 
have several possible drawbacks: 

• Phonetic trees are not able to use triphone modeling in all 
positions since the right phonetic context of a node in a tree 
can be ambiguous. 

• One cannot implement an admissible Viterbi search for a 
single lexicon tree when using a bigram language model, 
because the word being decoded (w2 in the bigram 
equation P(w2/wl)) may not be known until a leaf in the 
tree is reached—long after certain Viterbi decisions are 
typically made. 

The first concern can be addressed by replicating nodes in the tree 
to disambiguate triphone contexts. However, even this may not be 
necessary because the large majority of right contexts in the tree 
are unambiguous (that is, most nodes have only one child). This is 
shown in Table 3, where the concentrations of triphone and 
biphone models are compared for tree- and linear-lexicon 
schemes. 

Lexicon 
Type 

Triphone 
Models 

(%) 

Biphone 
Models 

(%) 

Tree 73 27 

Linear 85 15 

Table 2: Speed/accuracy trade-off for a beam search 
Table 3: Model allocation for the SRI WSJ system with 
and without lexicon trees 

perform the computation. 

We have found that this technique gives an unsatisfactory speed/ 
accuracy trade-off for this task and we have investigated other 
techniques as described below. 

2' All product names mentioned in this paper are the 
trademark of their respective holders. 
3- This workstation scores 85 and 93 for the SPECint92 
and SPECfp92 benchmarks. For our tests it is roughly 
50% faster than an SGI R4000 Indigo, and 50% faster 
than a SPARC 10/51. It should be between 1/2 and 2/3 
the speed of an HP735. SGI R4400 systems cost about 
$12.000. 

The second concern, the ability to model bigram language models 
using an admissible search strategy, is a problem. As shown in 
Table 4, moving from a bigram to a unigram language model more 
than doubles our error rate. Ney [7] has proposed a scheme where 
lexicon trees are replicated for each bigram context. It is possible 
that this scheme would generalize to our application as well. For 
the three recognition systems in Table 2, on average 7,13, and 26 
different words end each frame. This is the minimum average 
number of copies of the lexicon tree that the system would need to 
maintain. 



We have decided to pursue a different approach, which is shown 
in the figure below. We refer to this technique as approximate 
bigram trees. 

Table 4 shows speed/accuracy trade-offs for approximate bigram 

0 

Bigram 
Transitions 

\ 
1 
I 

* Backoff Transitions      * 

Figure 1: Approximate bigram trees 

In an approximate bigram tree, the aim is to model the salient 
portion of the backed-off bigram language model [11] in use. In an 
approximate bigram tree, a standard lexicon tree (incorporating 
unigram word probabilities) is combined with a bigram section 
that maintains a linear (non-tree) representation of the vocabulary. 
Bigram and backoff language model transitions are added to the 
leaves of the tree and to the word-final nodes of the bigram 
section.4 When the entire set of bigram is represented, then this 
network implements a full backed-off bigram language model 
with an efficient tree-based backoff section. In fact, for VQHMM 
systems, this scheme halves our typical decoding time for little or 
no cost in accuracy. Typically, however, we need further reduction 
in the computational requirement. To achieve this we represent 
only a subset of the group of bigram transitions (and adjust the 
backoff probabilities appropriately). This degrades the accuracy of 
our original bigram language model, but reduces its computational 
requirements. The choice of which bigrams to represent is the key 
design decision for approximate bigram trees. We have 
experimented with four techniques for choosing bigram subsets to 
see which make the best speed/accuracy trade-offs: 
Count x means only use bigrams where P(wl) * P(w2/wl) > Iff1. 
Prob x means only use bigrams where P(w2/wl) > JO". 
Improve X means only use bigrams where P(w2/wl) > 
Backofffwl) * P(w2) 110". 

Top x means only use bigrams P(w2/wl) where w2 is one of the 
most frequent x words. 

Tree Type 
Number of 

Bigrams Used 
(thousands) 

Word 
Error 
(%) 

Full Search 
Speed 
(xRT) 

Unigram 
tree 

0 42.3 0.6 

(non-tree) 
Bigram 

3500 21.5 8.5 

count. -6 93 30.4 1.5 
count, -5 10 35.8 0.9 
count, -4 .6 39.2 0.7 
prob. -3 1250 28.2 0.9 

prob, -25 671 29.2 0.8 
prob.-2 219 31.5 0.7 
prob, -1 20 36.6 0.7 

improve, 2 908 29.7 1.6 
improve, 3 191 37.1 0.8 

top 10 113 39.5 0.7 
top 50 320 36.0 0.7 

top 100 35.2 0.7 
top 1000 1500 31.4 1.1 
top 5000 2624 25.3 1.9 

top 20000 3500 21.0 -3 

Table 4: Performance of "approximate bigram" trees 

trees. 

The top two lines of the table show that the bigram language 
model improves performance from 42.3% word error to 21.5% as 
compared with a unigram language model. The rest of the table 
shows how approximate bigram trees can trade off the 
performance and speed of the bigram model. For instance, in 
several techniques shown—such as prob 2J—that maintain more 
than half of the benefit of bigrams for little computational cost. 
CPU usage goes from 0.6 to 0.8. when the error rate goes from 
42.3% to 29.2%. The rest of the improvement, reducing the error 
rate from 29.2% to 21%. increases the required computation rate 
by a factor of four. 

Table 4 also shows that the number of bigrams represented does 
not predict the computation rate. 

4" In the actual implementation, word-final nodes in the 
bigram section are merged with their counterparts in the 
tree so that the bigram transitions need be represented 
only once. For simplicity, however, we show the system 
with two sets of bigram probabilities. 



The square root of the perplexity of these language models seems 
to predict the recognition performance as shown in Table 5. 

Baseline2). This is especially true as the number of Gaussians per 
genone decreases. 

TopX Perplexity 
Perplexity 

Square 
Root 

Word 
error 
(%) 

0 1248 35.3 42.3 
10 954 30.9 39.5 
50 727 27.0 36.0 
100 631 25.1 35.2 

1000 401 20.0 31.4 
20000 237 15.4 21 

Table 5: Grammar Perplexity for top X trees 

System Gaussians 
per Genone 

Word Error 
(%) 

Baselinel 48 13.43 

Baseline 1+Qustering 18 14.17 

above+Retraining 18 13.64 

Baseline2 25 14.35 

Table 6: Improved training of systems with fewer 
Gaussians by clustering from a larger number of 
Gaussians 

4. REDUCING GAUSSIAN 
COMPUTATIONS 

SRI's most accurate recognition systems, using genonic mixtures, 
require the evaluation of very large numbers of Gaussian 
distributions, and are therefore very slow to compute. The 
baseline system referenced here uses 589 genonic mixtures 
(genones). each with 48 Gaussian distributions, for a total of 
28.272 39-dimensional Gaussians. On ARPA's November 1992 
20,000-word Evaluation Test Set. this noncrossword, bigram 
system performs at 13.43% word error. Decoding time from word 
lattices is 122 times slower than real time on an R4400 processor. 
Full grammar decoding time would be much slower. Since the 
decoding time of a genonic recognition system such as this one is 
dominated by Gaussian evaluation, one major thrust of our effort 
to achieve real-time recognition has been to reduce the number of 
Gaussians requiring evaluation each frame. We have explored 
three methods of reducing Gaussian computation: Gaussian 
clustering, Gaussian shortlists, and genonic approximations. 

4.1. Gaussian Clustering 

The number of Gaussians per genone can be reduced using 
clustering. Specifically, we used an agglomerative procedure to 
cluster the component densities within each genone. The criteria 
that we considered were an entropy-based distance and a 
generalized likelihood-based distance [6]. We found that the 
entropy-based distance worked better. This criterion is the 
continuous-density analog of the weighted-by-counts entropy of 
the discrete HMM state distributions, often used for clustering 
HMM state distributions [5], [3]. 

Our experiments showed that the number of Gaussians per genone 
can be reduced by a factor of three by first clustering and then 
performing one additional iteration of die Baum-Welch algorithm 
as shown in Table 6. The table also shows that clustering followed 
by additional training iterations gives better accuracy than directly 
training a system with a smaller number of Gaussians (Table 6. 

4.2. Gaussian Shortlists 

. We have developed a method for eliminating large numbers of 
Gaussians before they are computed. Our method is to build a 
"Gaussian shortlist" [2], [4], which uses vector quantization to 
subdivide the acoustic space into regions, and lists the Gaussians 
worth evaluating within each region. Applied to unclustered 
genonic recognition systems, this technique has allowed us to 
reduce by more than a factor of five the number of Gaussians 
considered each frame. Here we apply Gaussian shortlists to the 
clustered system described in Section 4.1. Several methods for 
generating improved, smaller Gaussian shortlists are discussed and 
applied to the same system. 

Table 7 shows the word error rates for shortlists generated by a 
variety of methods. Through a series of methods, we have reduced 
the average number of Gaussian distributions evaluated for each 
genone from 18 to 2.48 without compromising accuracy. The 
various shortlists tested were generated in the following ways: 

• None: No shortlist was used. This is the baseline case from 
the clustered system described above. All 18 Gaussians are 
evaluated whenever a genone is active. 

• 12D-256: Our original shortlist method was used. This 
method uses a cepstral vector quantization codebook (12- 
dimensions, 256 codewords) to partition the acoustic 
space. With unclustered systems, this method generally 
achieves a 5:1 reduction in Gaussian computation. In this 
clustered system, only a 3:1 reduction was achieved, most 
likely because the savings from clustering and Gaussian 
shortlists overlap. 

• 39D-256: The cepstral codebook that partitions the 
acoustic space in the previous method ignores 27 of the 39 
feature dimensions. By using a 39-dimensional. 256- 
codeword VQ codebook, we created better-differentiated 
acoustic regions, and reduced the average shortlist length 
to 4.93. 

• 39D-4096: We further decreased the number of Gaussians 
per region by shrinking the size of the regions. Here we 
used a single-feature VQ codebook with 4096 codewords. 



For such a large codebook, vector quantization is 
accelerated using a binary tree VQ fastrnatch. 

39D-4096-minl: When generating a Gaussian shortlist, 
certain region/genone pairs with low probabilities are 
assigned very few or even no Gaussians densities. When 
we were using 48 Gaussians/genone, we found it important 
to ensure that each list contains a minimum of three 
Gaussian densities. With our current clustered systems we 
found that we can achieve similar recognition accuracy by 
ensuring only one Gaussian per list. As shown in Table 7, 
this technique results in lists with an average of 2.48 
Gaussians per genone, without hurting accuracy. 

Table 8 shows the performance of the discrete approximate genone 
systems as a function of the number of regions used. 

Shortlist 
Shortlist 
Length 

Gaussians 
Evaluated 
per Frame 

Word Error 
(%) 

none 18 5459 13.64 

12D-256 6.08 1964 13.53 

39D-256 4.93 1449 13.46 

39D-4096 3.68 1088 13.64 

39D-4096-minl 2.48 732 13.50 

Table 7: Word error rates and Gaussians evaluated, for 
a variety of Gaussian shortlists 

Thus, with the methods in Sections 4.1 and 4.2. we have used 
clustering, retraining, and new Gaussian shortlist techniques to 
reduce computation from 48 to an average of 2.48 Gaussians per 
genone without affecting accuracy. 

4.3. Genonic Approximations 

We have successfully employed one other method for reducing 
Gaussian computation. For certain pairs of genones and acoustic 
regions, even the evaluation of one or two Gaussian distributions 
may be excessive. These are cases where the output probability is 
either very low or very uniform across an acoustic region. Here a 
uniform probability across the region (i.e., requiring no Gaussian 
evaluations) may be sufficient to model the output probability. 

To provide these regional flat probabilities, we implemented a 
discrete-density HMM. but one whose output probabilities were a 
region-by-region approximation of the probabilities of our 
genonic system. Since the two systems' outputs are calibrated, we 
can use them interchangeably, using a variety of criteria to decide 
which system's output to use for any given frame, state, acoustic 
region, or hypothesis. This technique, using variable resolution 
output models for HMMs is similar to what has been suggested by 
Alleva et al. [1]. 

We train this genonic approximation by averaging, for each 
acoustic region, the output of each genone across a set of 
observations. The resulting system can be used either by itself or 
in combination with the continuous system from which it was 
trained. 

Genonic 
System 

Number of 
Acoustic 
Regions 

Word Error 
(%) 

Continuous N/A 13.64 

Discrete 256 31.72 

Discrete 1024 23.62 

Discrete 4096 20.32 

Discrete 16384 18.40 

Table 8: Accuracy of genonic approximation systems 

Even with 16384 acoustic regions, the discrete genonic 
approximation has an error rate of 18.40%, compared with the 
baseline continuous system at 13.64%. However, when these 
discrete systems are used selectively in combination with a 
continuous genonic system, the results are more encouraging. Our 
most successful merger combines the 4096-region discrete 
approximation system (20.32% error) with the 39D-4096-minl 
genone system from Table 7 (13.50% error). In combining the two, 
instead of ensuring that a single Gaussian density was available for 
all shortlists, the genonic approximation was used for cases where 
no densities existed. In this way. we were able to eliminate another 
25% of the Gaussian computations, reducing our lattice-based 
computation burden to 564 Gaussians per frame, with a word error 
of 13.36%. 

In summary, we started with a speech recognition system with 
28,272 Gaussian distributions that computed 14,538 Gaussian 
distributions per frame and achieved a 13.43% word error rate 
running 12.2 times slower than real time on word lattices. Using 
the techniques described in Section 4, we have reduced the 
system's computational requirements to 564 Gaussians per frame, 
resulting in a system with word error of 13.36%, running at 2.0 
times real time on our word lattices. 

5. MULTIPASS APPROACHES 

The techniques for improving the speed of single-pass speech 
recognition systems can be combined to achieve other speed/ 
accuracy trade-offs (e.g.. trees using genone systems with reduced 
Gaussian computation rates). Furthermore, with multipass 
approaches [8,9] many of these techniques can be used 
independently as the different passes of the speech recognition 
system. For instance, a discrete density tree search may be used in 
a lattice building or a forward pass, and a Gaussian system may be 
used in the lattice and/or backward passes. 

We have performed preliminary evaluations of several of the tree- 
based systems presented in Section 3 to evaluate their performance 
as forward passes for a forward-backward search [9]. Preliminary 
results show that forward tree-based systems with 30% word error 
would add at most 3% to the word error rate of a full accuracy 
backward pass (i.e.. at most increase the error rate from 



approximately 10% to approximately 13%). More detail on this 
work will be presented at the HLT conference and will be included 
in the final version of this paper. 

6. CONCLUSIONS 

Tree-based techniques, combined with appropriate modeling 
alternatives, can achieve real-time performance at about 30% error 
rate for ARPA's 20.000-word Wall Street Journal task. We have 
shown techniques that reduce the computational complexity of 
more accurate but slower modeling alternatives so that they are 
near the speed necessary for real-time performance in a multipass 
search. Our near-future goal is to combine these two technologies 
so that real-time, high-accuracy large-vocabulary speech 
recognition can be achieved. 
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ABSTRACT 

In this paper we present SRI's results on the 1993 ARPA 
CSR Spoke Evaluations. This evaluation used the same HMM 
acoustic models as those used in SRI's hub system: gender-depen- 
dent Genonic HMM's. The system was made robust by modifying 
the front end algorithms to estimate the cepstral features (the 
HMM models were not modified). The robust front-end used a 
wide bandwidth (100-6400Hz) and estimated the cepstral coeffi- 
cients using a series of algorithms that had little effect on the Sen- 
nheiser features while making the secondary microphone features 
look more like the Sennheiser features. The decoder used SRI's 
DECIPHER™ speech recognition system [1-5] with a progressive 
search multipass HMM system, and used the Lincoln Lab 5K 
NVP trigram language model. 

1. SYSTEM DESIGN HIGHLIGHTS 

An overview of the SRI robust system design used for 
spokes S5, S6 and S7 is shown below: 

Speech 

Determine Gender 

Determine Microphone Type 

Robust Front End Signal 
Processing 

Decoder 

2. RESULTS HIGHLIGHTS 

SRI's results on Spoke S5 demonstrated that for unknown 
workstation microphones, there was an overall increase in the 
word-error rate of 27% over the Sennheiser microphone. For the 
Audio-Technica Microphone in Spoke S6, there was an 8% 
increase in word-error rate over the Sennheiser microphone. 
There was no significant difference between the performance 
using the Sennheiser microphone and the Audio-Technica Micro- 
phone. This is the first time that no significant increase in word- 
error was observed when training with a high-quality close-talk- 
ing microphone and testing with a secondary microphone. 

SRI's experiments demonstrated that unknown microphone 
algorithms can outperform known-microphone algorithms. By 
designing speech-recognition systems that use information about 
many different microphones, a recognition system can be 
designed so that small amounts of information about a new envi- 
ronment will not be sufficient to improve performance. The rec- 
ognition analogy is that speaker-independent system with lots of 
training can outperform a speaker dependent system with only 
limited training. For this reason, SRI's system for Spokes S6 and 
S7 used our best robust-system from Spoke S5. This has led to 
some confusion for the P0 condition for these spokes. In sum- 
mary, for Spokes S6 and S7 we did not think that it was necessary 
to adapt to the new microphone conditions as our microphone- 
independent system was robust to channel and noise conditions. 

3. GENDER/MICROPHONE SELECTION 

The gender selection algorithm consisted of a two stage 
process. The first stage was a fast initial gender decision which 
used a single state HMM model for each gender (one state for 
male speech, one state for female speech). Each state used 256 
Gaussian mixtures to represent the speech features. The features 
used for initial gender determination was the baseline zero-mean 
cepstral features C1-C12 augmented with pitch information. 

After the initial gender selection, progressive-search word 
lattices [3] were generated with speech-recognition models of the 
initial gender. These word-lattices were used to score the input 
utterance with a full-HMM system of each gender. The full-HMM 
models were then used to make the final gender selection based 
on HMM probability. If the HMM models reversed the decision 
of the earlier classifier, then new progressive-search word-lattices 
were generated for this sentence. 

Figure 1: SRI's Robust CSR Block Diagram 



The results of gender selection are shown below in the fol- 
lowing table: 

Experiment 

Sennheiser 
Secondary 

Microphone 

Fast HMM Fast HMM 

Spoke S5 0.0% 0.0% 4.2% 2.3% 

Spoke S6 0.7% 0.0% 25% 02% 

Spoke S7 2.0% 0.9% 4.9% 2.0% 

Table 1: Sentence Misclassification Rate on Eval Test Set 

The results in Table 1 show that the HMM classifier has a 
65% lower misclassification error rate compared to the fast algo- 
rithm. Note that for the conditions when no noise is present, the 
HMM classifier never makes a sex selection error. When tested in 
noise, the error rate rises to 0.9%. The average gender classifica- 
tion error rate for the secondary microphone (averaged across all 
spokes S5-S7) is 1.4%, which is slightly higher than the rate when 
noise is present for the Sennheiser waveform. 

After the gender of the waveform has been determined, the 
robust system then automatically determines the type of micro- 
phone that the speech system was collected with. This is done 
using a fast single state-HMM classifier, similar to the one 
described above. The difference here is that only the baseline 
zero-mean cepstral features C1-C12 are used to determine the 
microphone type (pitch information is not used). A summary of 
the overall microphone classification system is shown below in 
Figure 2. 

Speech 

Male 

Sennheiser Non- 
Sennheiser 

Female 

Sennheiser   Non- 
Sennheiser 

Non- Telephone    Non- Telephone 
Telephone Telephone 

Figure 2: Selection of Microphone Type: (a) Sennheiser, 
(b) Non-Sennheiser & Non-Telephone, (c) Telephone 

The classification rate of the above algorithm is shown in 
Table 2. Note that in high-noise environments, the Sennheiser 
waveform becomes misclassified as a secondary microphone 
almost 30% of the time. When this happens, the robust signal pro- 
cessing is then applied to these Sennheiser waveforms. Also note 
that the error is never reversed: no secondary microphone wave- 
forms in noise are classified as Sennheiser waveforms. Although 
SNR is not an explicit feature for determining microphone type, 
this information is clearly represented in the cepstral features. 

Also, there are no classification errors in distinguishing between 
workstation-microphones and telephone-microphone waveforms. 

Sennheiser 
Secondary 

Microphone 

Spoke S5 2.3% 8.8% 

Spoke S6 1.4% 0.0% 

Spoke S7 292% 0.0% 

Table 2: Classification Errors for Distinguishing Between Sen- 
nheiser and Non-Sennheiser Waveforms 

4. SELECTION of BEST FRONT END and 
ROBUST CEPSTRAL COMPUTATION 

Each of the different terminal conditions in Figure 2 has a 
different front end associated with it For the Sennheiser wave- 
forms, the baseline zero-mean cepstra were used as the features. 
For both telephone and non-telephone front end systems, different 
robust estimation algorithms were used to estimate the cepstral 
features. An overview of the cepstral feature computation is shown 
below in Figure 3. 

• Single POF Mapping Models 

Speech POF  — DECODER 

Multiple Parallel Mapping Models 

-POF 

Speech 

r~ POF — Likelihood «-, 

Likelihood - 

_ poF — Likelihood - 

— pOF —» Likelihood J 

Average Best 
Two Feature 
Streams 

DECODER 

Figure 3: Use of POF Robust Front End for Unknown 
Microphone: Single or Multiple Front End Mappings. 

The above description in Figure 3 illustrates the two algo- 
rithms used to estimate robust cepstral features. Fort the non-Sen- 
nheiser, non telephone condition, we used the first approach of a 
single POF mapping. For the telephone condition, we used the sec- 
ond approach of multiple parallel mappings. The results used to 
select different conditions can be found in Section 7.4. 



An overview of the subsequent steps in recognizing with the 
robust speech recognition system is described below: 

• Generate Robust Acoustic Features According To Gender 
and Microphone Type 

• Generate N-Best Lists for Rescoring Using Gender-Depen- 
dent Genonic HMM Acoustic Models 

Progressive Search Uses Initial Word Lattices 
Generated During Sex Selection Stage 

• Rescore N-Best Lists Using Lincoln Lab. Trigram Language 
Model 

The following two sections describe the computation of 
robust cepstral features. The decoding stages used in the latter 
stages of processing are described elsewhere [3]. 

4.1. Non-Telephone Cepstra Computation 

A summary of the workstation-microphone cepstral compu- 
tation is described below: 

• Uses Single POF Mapping Model 

• Train Mapping Using 600 Stereo Waveform Pairs from 11 
Different Microphones. 

Used Si-Many Portion of WSJO + WSJ1 Corpus 

• Compute 256 Mapping Transformations: One For Each of 
256 Regions of Acoustic Space. 

Frame Filterbank Instantaneous SNR 
25 Dimensional Feature 
Current Frame Augmented with Neighboring 2 Frames 
On Each Side 

• Separate Mapping for CO and Cepstra C1-C12. 

The parameters that the above algorithm refers to are 
described in more detail in section 6 and 7 which describe the POF 
model. 

42. Telephone Cepstra Computation 

A summary of the telephone-microphone cepstral computa- 
tion is described below: 

• Use 15 Parallel Mapping Models. 

One Mapping Model for Each of 14 Microphones 
Baseline Zero-Mean Cepstra is 15th Model 

• Train Each Mapping Model Using 200 Stereo Waveform 
Pairs. 

-     Used SI-Many Portion of WSJO + WSJ1 Corpus 

• Compute Features Using Each Mapping. 

• Select Best Two Feature Streams. 

Compute Likelihood of Each Set of Feature for 
Sentence 
Average Two Transformed Feature Streams: C0-C12 

Compute First and Second Derivatives on Averaged 
Features. 

Section 7.4 describes the experimental results in more detail 
that were used to select the appropriate front end signal processing 
for this condition. 

5. MAPPING ALGORITHMS 

5.1. Background 

In many practical situations an automatic speech recognizer 
has to operate in several different but well-defined acoustic envi- 
ronments. For example, the same recognition task may be imple- 
mented using different microphones or transmission channels. In 
this situation it may not be practical to recollect a speech corpus to 
train the acoustic models of the recognizer. To alleviate this prob- 
lem, we propose an algorithm that maps speech features between 
two acoustic spaces. The models of the mapping algorithm are 
trained using a small database recorded simultaneously in both 
environments. 

In the case of steady-state additive homogenous noise, we 
can derive a MMSE estimate of the clean speech filterbank-log 
energy features using a model for how the features change in the 
presence of this noise [6-7]. In these algorithms, the estimated 
speech spectrum is a function of the global spectral SNR, the 
instantaneous spectral SNR, and the overall spectral shape of the 
speech signal. However, after studying simultaneous recordings 
made with two microphones, we believe that the relationship 
between the two simultaneous features is nonlinear. We therefore 
propose to use a piecewise-nonlinear model to relate the two fea- 
ture spaces. 

52. Related Work on Feature Mapping 

There have been several algorithms in the literature which 
have focused on experimentally training a mapping between the 
noisy features and the clean features [8-13]. This work builds on 
similar robust algorithm development that have been developed at 
BBN, CMU, and IBM. Several of the features of these systems 
have been incorporated into the design of SRI's robust front end 
analysis. 

The proposed algorithm differs from previous algorithms in 
several ways: 

• The MMSE estimate of the clean speech features in noise is 
trained experimentally rather than with a model as in [6,7]. 

• Several frames are joined together similar to [13]. 

• The conditional PDF is based on a generic noisy feature not 
necessarily related to the feature that we are trying to esti- 
mate. For example, we could condition the estimate of the 
cepstral energy on the instantaneous spectral SNR vector. 

• Multidimensional least-squares filters are used for the map- 
ping transformation. This is used to exploit the correlation of 
the features over time and among components of the spectral 
features at the same time. 

• Linear transformations are combined together without hard 
decisions. 



• All delta parameters are computed after mapping the cep- 
strum and cepstral energy. 

• The mapping parameters are trained using stereo recordings 
with two different microphones. Once trained, the mapping 
parameters are fixed. 

• The mapping can be used to map either noisy speech fea- 
tures to clean features during training, or clean features to 
noisy features during recognition. 

53. Related Work on Adaptation 

The algorithm used to map the incoming features into a 
more robust representation has some similarities to work on model 
adaptation. Some of the high-level differences between HMM 
model adaptation and the mapping algorithms proposed in this 
paper are: 

• The mapping algorithm works by primarily correcting shifts 
in the mean of the feature set that are correlated with observ- 
able information. Adapting HMM model parameters has 
certain degrees of freedom which the mapping algorithm 
does not have: e.g. ability to change state variances, and 
mixture weights. 

• Two HMM states that have identical probability distribu- 
tions which and are not tied can have different distributions 
after adaptation. These distributions cannot be differentiated 
by mapping features. 

• The mapping algorithms described in this paper are able to 
incorporate many pieces of information mat have been tradi- 
tionally difficult to incorporate into HMM models and into 
adaptation algorithms. These include observations which 
span across several frames and the correlation of the state 
features with global characteristics of the speech waveform. 

These two techniques are not mutually exclusive and can be 
used together to achieve robust speech recognition performance. 
The boundary between these two techniques can be blurred when 
the mapping algorithm is dependent on the speech recognizer's 
hypothesis. 

6. THE POF ALGORITHM 

The mapping algorithm is based on a probabilistic piece- 
wise-nonlinear transformation of the acoustic space that we call 
Probabilistic Optimum Filtering (POF). Let us assume that the 
recognizer is trained with data recorded with a high-quality close- 
talking microphone (clean speech), and the test data is acquired in 
a different acoustic environment (noisy speech). Our goal is to 
estimate a clean feature vector xn given its corresponding noisy 
feature y where n is the frame index. (A list of symbols is 
shown in Table 1.) To estimate the clean vector we vector-quan- 
tize the clean feature space in / regions using the generalized 
Lloyd algorithm [14]. Each VQ region is assigned a multidimen- 
sional transversal filter (see Figure 1). The error between the clean 
vector and the estimated vectors produced by the «-th filter is given 
by 
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Figure 4: Multi-dimensional transversal filter for cluster j. 

e . = x -x . = i -T^Y nt       n     m       n      i   n (1) 

where e . is the error associated with region i, W. is the filter 
coefficient matrix, and Y is the tapped-delay line of the noisy 
vectors. Expanding these matrices we get 
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The conditional error in each region is defined as 

N-l-p 

v E 
n = p 

I'd *w 

(2) 

(3) 

(4) 

where pigiz) is the probability that the clean vector x(. 

belongs to region g. given an arbitrary conditional noisy feature 
vector z . Note that the conditioning noisy feature can be any 
acoustic vector generated from the noisy speech frame. For exam- 
ple, it may include an estimate of the signal-to-noise ratio (SNR), 
energy, cepstral energy, cepstrum, etc. 

The conditional probability density function pfeBtep is 
modeled as a mixture of / Gaussian distributions. Each Gaussian 
distribution models a VQ region. The parameters of the distribu- 
tions (mean vectors and covariance matrices) are estimated using 
the corresponding z vectors associated with that region. The 

posterior probabilities pig^. are computed using Bayes' the- 

orem and the mixture weights, pi gA. are estimated using the 
relative number of training clean vectors that are assigned to a 
given VQ region. 

To compute the optimum filters in the mean-squared error 
sense, we minimize the conditional error in each VQ region. The 
minimum mean-squared error vector is obtained by taking the gra- 
dient of £,• defined in Eq. (4) with respect to the filter coefficient 
matrix and equating all the elements of the gradient matrix to zero. 
As a result, the optimum filter coefficient matrix has the form. 

Wi - */ 
■1 where 



Symbol Dimension Description 
n frame index 
i region index 
L feature vector size 
M conditioning feature vector size 
N number of training frames 
I number of VQ regions 

P maximum filter delay 

eni Lxl estimation error vector 
x

n 
Lxl clean feature vector 

*n 
Lxl estimate of clean feature vector 

yn 
Lxl noisy feature vector 

zn Mxl conditioning noisy feature vector 

v-i Mxl mean vector of gaussian i 
£. i MxM covariance matrix of gaussian i 
Wi (2p+l)L+lxL transversal filter coefficient matrix 

Yn (2p+l)L+lxl tap input vector 
Aik LxL multiplicative tap matrix 
bi Lxl additive tap matrix 
R. (2p+l)L+l x auto-correlation matrix 

(2p+l)L+l 

r. 
—i  

(2p+l)L+lxL cross-correlation matrix 

Table 3: List of Symbols. 

N-l-p 
Ri= E vfrw (5) 

n=p 
is a probabilistic non-singular auto-correlation matrix, and 

N-l-p 

'l~     £    Vi*W (6) 

n=p 

is a probabilistic cross-correlation matrix. 

The algorithm can be completely trained without supervi- 
sion and requires no additional information other than the simulta- 
neous waveforms. 

The run-time estimate of the clean feature vector can be 
computed by integrating the outputs of all the filters as follows: 

1-1 ,7-1 i 

i = 0 i = 0 

(7) 

7. EXPERIMENTS 

7.1. Introduction 

In this section we present a series of experiments that show 
how the mapping algorithm can be used in a continuous speech 
recognizer across acoustic environments. In all of the experiments 

the recognizer models are trained with data recorded with high- 
quality microphones and digitally sampled at 16,000 Hz. The anal- 
ysis frame rate is 100 Hz. 

tors: 
The tables below show three types of performance indica- 

Relative distortion measure. For a given component of a fea- 
ture vector we define the relative distortion between the 
clean and noisy data as follows: 

= lEUx-y)2~. 
V     var(;c) (8) 

Word recognition error. 

• Error ratio. The error ratio is given by   E /E   where 

E    is the word recognition error for the test-noisy/train- 

clean condition, and  E   is the wo 

the test-clean/train-clean condition. 

clean condition, and  E   is the word recognition error of 

12. Single Microphone 

To test the POF algorithm on a single target acoustic envi- 
ronment we used the DARPA Wall Street Journal database [15] on 
SRI's DECIPHER™ phonetically tied-mixture speech recognition 
system [2]. The signal processing consisted of a filterbank-based 
front-end that generated six feature streams: cepstrum (cl-cl2), 
cepstral energy (cO), and their first- and second-order derivatives. 
Cepstral-mean normalization [16] was used to equalize the chan- 
nel. We used simultaneous recordings of high-quality speech (Sen- 
nheiser 414 head-mounted microphone with a noise-cancelling 
element) along with speech recorded by a standard speaker phone 
(AT&T 720) and transmitted over local telephone lines. We will 
refer to mis stereo data as clean and noisy speech respectively. The 
models of the recognizer were trained using 42 male WSJ0 train- 
ing talkers (3500 sentences) recorded with a Sennheiser micro- 
phone. The models of the mapping algorithm were trained using 
240 development training sentences recorded by three speakers. 
The test set consisted of 100 sentences (not included in the training 
set) recorded by the same three speakers. 

In this experiment we mapped two of the six features: the 
cepstrum (cl-cl2) and the cepstral energy (cO) separately. The 
derivatives were computed from the mapped vectors of the ceps- 
tral features. For the conditioning feature we used a 13-dimen- 
sional cepstral vector (c0-cl2) modeled with 512 Gaussians with 
diagonal covariance matrices. The results are shown in Table 2. 

Filter Coefficients 
Average 
Distortion 

Recognition 
Error (%) Error Ratio 

No mapping 0.72 27.6 2.46 

Aj.o=I. bj 0.62 18.1 1.62 

Ai.o. bi 0.57 17.0 152 
Table 4: Performance of the POF algorithm for different num- 
ber of filter coefficients. The number of Gaussian distributions is 
512 per feature and the conditioning feature is a 13-dimensional 
cepstral vector. 



Filter Coefficients 

Ai.-1 •••' Ai.-J ' b' 

Ajr2,..,Air2,bi 

K-3 ' *i.-3 

Ai^(,..,Air4,bi 

Average 
Distortion 

0.51 

0.5Ü 

0.49 

0.49 

Recognition 
Error (%) 

17.3 

16.4 

15.9 

16.1 

Error Ratio 

1.54 

1.46 

1.42 

1.44 

Table 4: Performance of the POF algorithm for different num- 
ber of filter coefficients. The number of Gaussian distributions is 
512 per feature and the conditioning feature is a 13-dimensional 
cepstral vector. 

The baseline experiment produced a word error rate of 
27.6% on the noisy test set, that is, 2.46 times the error obtained 
when using the clean data channel. A 34% improvement in recog- 
nition performance was obtained when using only the additive fil- 
ter coefficient bt. (Recognition error goes down to 18.1%.) The 
best result (15.9% recognition error) was obtained for the condi- 
tion p=3, in which six neighboring noisy frames are being used to 
estimate the feature vector for the current frame. The correlation 
between the average relative distortion between the six clean and 
noisy features and the recognition error is 0.9. 

73. ATIS Simultaneous Corpus 

To test the performance of the POF algorithm on multiple 
microphones we used SRI's stereo-ATIS database. (See [1] for 
details.) A corpus of both training and testing speech was col- 
lected using simultaneous recordings made from subjects wearing 
a Sennheiser HMD 414 microphone and holding a telephone 
handset. The speech from the telephone handset was transmitted 
over local telephone lines during data collection. Ten different 
telephone handsets were used. Ten talkers were designated as 
training talkers, and three talkers were designated as the test set 
The training set consisted of 3,000 simultaneous recordings of 
Sennheiser microphone and telephone speech. The test set con- 
sisted of 400 simultaneous recordings of Sennheiser and telephone 
speech. The results obtained with this pilot corpus are shown in 
Table5. 

loss of information in reducing the bandwidth from 100-6400 Hz 
to 300-3300 Hz. However, when we are using a telephone front 
end, there is only a 7.8% increase in word error when testing on 
telephone speech compared to testing on Sennheiser speech (9.7% 
versus 9.0%). This is very surprising result, and we had expected a 
much bigger performance difference when Sennheiser models are 
tested on telephone speech acoustics. 

7.4. Multiple Microphones: Single or Multiple Mapping 

There are a number of ways that the POF mapping algorithm 
can be used when the microphone is unknown. Some of these vari- 
ations are shown in Table 6. 

Experiment 
Word 
Error 

Single Mapping Combining All 10 Telephones 
in Training Data 

9.4 

Train 10 Mappings, One for Each Telephone; 
Run 10 Recognizers in Parallel, each using Dif- 
ferent Mapping; Select Recognizer with Highest 

Probability 

92 

Train 10 Mappings. One for Each 
Telephone; Run 10 Mappings in 
Parallel and Average Features of 

Best N Feature-Streams that Have 
Highest Likelihood 

Topi 9.3 

Top2 92 

Top3 8.9 

Top4 8.7 

Train 15 Mappings for WSJ Cor- 
pus; Run 15 Mappings in Parallel 
and Average Features of BestN 

Feature-Streams that Have High- 
est Likelihood 

Topi 9.8 

Top2 9.6 

Top3 10.3 

Top4 10.7 

Table 6: Performance on the multiple-telephone handset test set 
when mapping algorithm is used in different ways. 

Acoustic Model Training Test Set Word Error (%) 

Training 
Data 

Front End 
Bandwidth Sennheiser Telephone 

Sennheiser Wide 7.8 19.4 

Sennheiser Telephone 9.0 9.7 

Telephone Telephone 10.0 10.3 

Table 5: Effect of Different Training and Front-End Bandwidth 
on Test Set Performance. Results are Word Error Rate on the 400 
Sentence Simultaneous Test Set 

We can see from Table 5 that there is a 15.4% decrease in 
performance when using a telephone front end (7.8% increases to 
9.0% word error) and testing on Sennheiser data. This is due to the 

The differences between the experimental conditions are 
small, but the trends are different and depend on the mapping and 
the corpus. These differences depend on the similarities of the dif- 
ferent microphones that are used in training conditions, and the 
relationship between the training and the testing conditions. 

When the microphones are all similar (10 telephone map- 
pings), then averaging the features of each mapping helps improve 
performance. When the microphones are very different (e.g. those 
in WSJ corpus), averaging the features of each mapping has a min- 
imum when averaging two best (likelihood) feature streams. 

7.5. Multiple Microphones: Conditioning Feature 

The next experiment varied the conditioning feature. The 
conditioning feature is the feature vector that is used to divide the 
space into different acoustic regions. In each region of the acoustic 
space there is a different linear transformation that is trained. 



The mapping approach was fixed: we used a single POF 
mapping for multiple telephone handsets. For this experiment we 
mapped the cepstrum vector (cl-cl2) and the cepstral energy (cO). 
The maximum delay of the filters was kept fixed at/>=2, and the 
number of Gaussians was 512. The experimental variable was 
what feature the estimates were conditioned on. We tried the fol- 
lowing conditioning features: 

• Cepstrum. Same conditioning feature used in the single 
microphone experiment (c0-c!2). 

• Spectral SNR. This is an estimate of the instantaneous sig- 
nal-to-noise ratio computed on the log-filterbank energy 
domain. The vector size is 25. 

• Cepstral SNR. This feature is generated by applying the 
discrete cosine transform (DCT) to the spectral SNR. The 
transformation reduces the dimensionality of the vector 
from 25 to 12 elements. 

The results are shown in Table 7. The baseline result is a 
19.4% word error rate. This result is achieved when the same 
wide-band front-end is used for training the models with clean 
data and for recognition using telephone data. When a telephone 
front-end [1] is used for training and testing, the error decreases to 
9.7%. The disadvantage of using this approach is that the acoustic 
models of the recognizer have to be re-estimated. However, the 
POF-based front-end operates on the clean models and results in 
better performance. The cepstral SNR produces the best result 
(8.7%). With this conditioning feature we combine the effects of 
noise and spectral shape in a compact representation. 

The acoustic models used by the HMM system were trained 
with 37.000 sentences of Sennheiser data from 280 speakers, a set 
officially designated as the WSJ0+WSJ1 many-speaker baseline 
training. A 5K closed-vocabulary back-off trigram language 
model provided by M.I.T. Lincoln Laboratory for the WSJ task 
was used. Gender-dependent HMM acoustic models were used. 

The front-end processing extracts one long spectral vector 
which consists of the following six feature components: cepstrum, 
energy and their first and second order derivatives. The dimension- 
ality of this feature is 39 (13 * 3) for the wide-bandwidth spectral 
analysis and 27 (9 * 3) for the telephone-bandwidth spectral analy- 
sis. The cepstral features are computed from an FFT filterbank, 
and subsequent cepstral-mean normalization on a sentence by sen- 
tence basis is performed. 

Before using wide-bandwidth context-dependent genonic 
HMMs, a robust estimate of the Sennheiser cepstral parameters is 
computed using Probabilistic Optimum Filtering. The robust front- 
end analysis is designed for an unknown microphone condition. 
The POF mapping algorithm estimates are conditioned on the 
noisy cepstral observations. Separate mappings are trained for 
each of the 14 microphones in the baseline WSJ0+WSJ1 si_tr_s 
stereo training, as well as one mapping for the overall case of sin- 
gle non-telephone mapping. When the default no-transformation 
zero-mean cepstra are included, this makes a total of 15 estimated 
feature streams. These feature streams are computed on each test 
waveform, and the two feature streams with the highest likeli- 
hoods (using a simplified HMM for scoring the features) are aver- 
aged together (Top2). In all cases the first and second delta 
parameters are computed on these estimated cepstral values. 

Word 
Experiment Error (%) Error Ratio 

Wide-band front-end 19.4 2.49 

Telephone-bandwidth front-end 9.7 1.24 

Mapping with cepstrum 9.4 1.20 

Mapping with spectral SNR 8.9 1.14 

Mapping with cepstral SNR 8.7 1.11 

Table 7: Performance for the multiple-telephone handset test 
set when varying the conditioning feature. 

. 8. WSJ EXPERIMENTAL RESULTS 

Another series of experiments was performed on the Wall 
Street Journal (WSJ) Speech Corpus [15]. We evaluated our sys- 
tem on the 5000-word-recognition closed-vocabulary speaker- 
independent speech-recognition tasks: Spoke S5 Unknown Micro- 
phone, Spoke S6: known microphone, and Spoke S7 Noisy Envi- 
ronment 

The version of the DECIPHER speaker-independent contin- 
uous speech recognition system used for these experiments is 
based on a progressive-search strategy [3] and continuous-density, 
GENONIC hidden Markov models (HMMs) [2]. Gender-depen- 
dent models are used in all passes. Gender selection is accom- 
plished by selecting the gender with the higher recognition 
likelihood. 

Front-End 
Bandwidth Signal Processing Test Set 

Word 
Error (%) 

Wide Standard Sennheiser 5.8 

Telephone Standard Sennheiser 9.6 

Telephone Standard Telephone 10.9 

Wide Robust POF15 
Cepstral Mapping 

Telephone 11.9 

Table 8: Performance on the Aug 1993 WSJ Spoke S6 Develop- 
ment Test Set for Simultaneous Sennheiser/Telephone Record- 
ings 

The results in Table 8show that most of the loss in perfor- 
mance between recognizing on high-quality Sennheiser recordings 
and on local telephone speech is due to the loss of information out- 
side the telephone bandwidth. There is an increase in the word- 
error rate of 66% when testing on Sennheiser recordings with a 
wide-bandwidth analysis (5.8%) compared to testing with a tele- 
phone-bandwidth analysis (9.6%). 

The loss in performance when switching from Sennheiser 
recordings to telephone recordings is small in comparison to the 
loss of information due to bandwidth restrictions. There is a 14% 
increase in the word-error rate when testing on the Sennheiser 
recordings (9.6%) compared to testing on the AT&T telephone 
recordings (10.9%). 



8.1. Official Spoke Results: Unknown Microphone 

The results in Table 9show the speech recognition perfor- 
mance when the secondary microphone condition is unknown. In 
these experiments, the robust signal processing front end 
decreased the word error rate from 17.2 to 13.1%. 

Experiment 

Word Error 

Sennheiser 
Secondary 

Microphone 

Compensation Disabled 6.6 17.2 

Compensation Enabled 6.6 13.1 

Table 9: Word Error Rate With and Without Compensation on 
both Sennheiser and Secondary Microphone Data 

If we look in more detail at the results, we see the following 
information: 

Spoke S3 Condition PO Cl C2 C3 P0/C3 

2 Telephones 29.9 48.7 42 4.2 7.12 

8 Non-Telephones 9.3 10.2 7.3 7.3 1.27 

Table 10: Spoke S5 Results for Telephone and Non-Telephone 
Microphones. 

Clearly, the robust algorithms did not perform well for tele- 
phone speech. We attribute this to the fact that we used wide band- 
width acoustic models and the robust front end was not able to 
accurately estimate the cepstral features for this test data. The poor 
official telephone results are due to out-of-band noise which was 
correlated with the speech signal that our system was sensitive to. 
This can also be seen in the poor official telephone results for 
spokes S6 and S7 as well. In retrospect we should have used tele- 
phone bandwidth HMM models for this condition. 

Note that for the workstation microphones, there was an 
increase of only 27% in the word-error over the Sennheiser micro- 
phone condition. 

82. Official Spoke Results: Known Microphone 

The results in Table 11 show no significant difference in 
speech recognition performance between those obtained with the 
Audio-Technica microphone and those obtained with the Sen- 
nheiser microphone. The robust front-end signal processing has 
demonstrated for the first time that one can achieve the same per- 
formance with a stand-mounted microphone as with a high-quality 
close-talking microphone, all when trained on high-quality speech 
corpus. 

Experiment 

Word Error 

Sennheiser 
Secondary 

Microphone 

Audio-Technica Recordings 5.9 6.4 

Telephone Handset Recordings 7.2 19.1 

Table 11: Word Error for both Sennheiser and Secondary Micro- 
phone with Robust Signal Processing Front End 

Note that the above system did not use any microphone 
adaptation data. For this reason, we did not have a PO result It was 
our belief that since there was no degradation in performance 
when changing microphone, that no microphone adaptation algo- 
rithms were needed. In particular, the results from our develop- 
ment testing are shown below: 

Test Microphone Signal Processing 
Word 
Error 

Error 
Ratio 

Sennheiser Standard 7.7 1.00 

Audio-Technica Standard 10.9 1.42 

Audio-Technica POFW/Mic Adapt 9.2 1.19 

Audio-Technica ROBUST POF15 8.7 1.13 

Table 12: Results on 4 Male Talkers in Spoke S6 Audio-Tech- 
nica Development Test Set Using a Pre-Evaluation Recognizer 
With Bigram Grammar 

Note that the best robust system had an error ratio (second- 
ary microphone error-rate over Sennheiser-microphone error rate) 
which increased the error by only 13% over the Sennheiser condi- 
tion, while the microphone adaptation system had an error increase 
of 19%. Both systems were better than the baseline cepstral zero- 
mean system which had an increase in the error rate of 42%. 

S3. Official Spoke Results: Noisy Environment 

The results in Table 13 show the performance when the 
recordings are made in a noisy environment. The first noisy envi- 
ronment was a computer room (average background noise level of 
58-59 dBA), and the second noisy environment was a laboratory 
with mail sorting equipment (average noise level varied from 62- 
68 dBA). The error rates are significantly higher for the audio- 
technica microphone than the sennheiser microphone in the noisier 
environment. In the computer room environment the performance 
with the audio-technica microphone is almost indistinguishable 
from that of the Sennheiser recording. 



Word Error 

Experiment Sennheiser 
Secondary 

Microphone 

Audio-Technica 
Recordings 

Env 1 6.3 8.5. 

Env2 9.1 17.4 

Telephone Handset 
Recordings 

Env 1 8.4 29.1 

Env 2 8.3 28.8 

Table 13: Word Error for both Sennheiser and Secondary Micro- 
phone with Robust Signal Processing Front End when Recorded 
in Two Noisy Environments 

For the Audio-Technica recordings, there was a 35% 
increase in the word-error rate when used in a computer-room 
environment, but a 90% increase in the word-error rate when used 
in the mail-sorting equipment environment. 

9. CONCLUSIONS 
We have presented a feature mapping algorithm capable of 

exploiting nonlinear relations between two acoustic spaces. We 
have shown how to improve the performance of the recognizer in 
the presence of a noisy signal by using a small database with 
simultaneous recordings in the clean and noisy acoustic environ- 
ments. 

We have shown that 

• There is no significant difference in speech recognition per- 
formance between those obtained with the Audio-Technica 
microphone and those obtained with the Sennheiser micro- 
phone. There is no significant performance degradation in a 
quiet environment and only a slight degradation in low noise 
environments (~59 dBA). 

• Multidimensional least-squares filters can be successfully 
used to exploit the correlation of the features over time and 
among components of the spectral features at the same time. 
These filters can be conditioned on both local & global spec- 
tral information to improve robust recognition performance. 

• Most of the performance loss in converting wide-bandwidth 
models to telephone speech models is due to the loss of 
information associated with the telephone bandwidth. 

• It is possible to construct acoustic models for telephone 
speech using a high-quality speech corpus with only a minor 
increase in recognition word-error rate. 

• A telephone-bandwidth system trained wi± high-quality 
speech can outperform a system that is trained on telephone 
speech even when tested on telephone speech. 

• The variability introduced by the telephone handset does not 
degrade speech recognition performance. 

• Robust signal processing can be designed to maintain 
speech recognition performance using wide-bandwidth 
HMM models with a telephone-bandwidth test set 
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Abstract 

A recent trend in automatic speech recognition systems is the use of continuous 

mixture-density hidden Markov models (HMMs). Despite the good recognition perfor- 

mance that these systems achieve on average in large vocabulary applications, there is 

a large variability in performance across speakers. Performance degrades dramatically 

when the user is radically different from the training population. A popular technique 

that can improve the performance and robustness of a speech recognition system is 

adapting speech models to the speaker, and more generally to the channel and the task. 

In continuous mixture-density HMMs the number of component densities is typically 

"Submitted to the IEEE Transactions on Speech and Audio Processing. 



very large, and it may not be feasible to acquire a sufficient amount of adaptation 

data for robust maximum-likelihood estimates. To solve this problem, we propose 

a constrained estimation technique for Gaussian mixture densities. The algorithm 

is evaluated on the large-vocabulary Wall Street Journal corpus for both native and 

nonnative speakers of American English. For nonnative speakers, the recognition error 

rate is approximately halved with only a small amount of adaptation data, and it 

approaches the speaker-independent accuracy achieved for native speakers. For native 

speakers, the recognition performance after adaptation improves to the accuracy of 

speaker-dependent systems that use 6 times as much training data. 



1     Introduction 

Recognition error rates ranging from 10% to 15% have recently been achieved in the 

20,000-word, open-vocabulary recognition task on the Wall Street Journal (WSJ) corpus [20] 

using hidden Markov models (HMMs) [2, 12] with continuous-mixture observation densities 

[19]. However, this recognition performance is far from satisfactory for most usable large- 

vocabulary recognition (LVR) applications. Moreover, recognition accuracy is very sensitive 

to speaker variability and will degrade much more in the move from the lab to the field. 

Speaker-, channel-, or other task-dependent solutions require excessive collection of training 

data and decrease system utility and portability. A popular technique that can be used 

to improve the performance and robustness of a speech recognition system is adapting the 

speech model to the speaker, channel, and task [5, 23, 9, 15]. In this work, we consider 

adaptation to the speaker, although the techniques can be modified to be used at other 

levels. 

In this paper we will present novel adaptation techniques for state-of-the-art continuous 

mixture-density HMMs. It has recently been shown that HMMs that use continuous-density 

probability distributions achieve better recognition performance than those that use discrete- 

density distributions [19]. After [8], we refer to a group of Gaussians that are used to form 

a Gaussian mixture distribution as a genone, to the collection of these groups as genones, 

and to HMM systems with an arbitrary degree of genone sharing1 as genonic HMMs. The 

degree of genone sharing significantly affects recognition performance [8]. HMM systems 

with less sharing have typically a smaller number of Gaussians per genone and a larger 

total number of Gaussians than systems with fewer genones. The increase in the number of 

xBy degree of genone sharing we refer to the average number of distinct HMM states that share the same 

genone's Gaussians in their output distributions. 



Gaussians is usually over-compensated for by the decrease in the number of mixture weights, 

and systems with less sharing have a smaller number of parameters. Hence, they are more 

suited to adaptation than tied-mixture HMMs (single-genone systems, with all HMM states 

sharing the same Gaussians in their mixture distributions). 

Two families of adaptation schemes have been proposed in the past. One transforms 

the speaker's feature space to "match" the space of the training population [6, 18, 4]. The 

transformation can be applied either directly to the features, or to the speech models. The 

second main family of adaptation algorithms follows a Bayesian approach, where the speaker- 

independent information is encapsulated in the prior distributions [5, 15]. The transforma- 

tion approach has the advantage of simplicity. In addition, if the number of free parameters 

is small, then transformation techniques adapt to the user with only a small amount of 

adaptation speech (quick adaptation). The Bayesian approach usually has nice asymptotic 

properties, that is, speaker-adaptive performance will converge to speaker-dependent per- 

formance as the amount of adaptation speech increases. However, the adaptation rate is 

usually slow. 

For HMMs with a small degree of sharing and a large total number of Gaussians, 

it is impractical to expect enough adaptation data to obtain robust maximum-likelihood 

(ML) estimates of all the Gaussians. To deal with the problem of adapting a large number 

of Gaussians from small amounts of adaptation speech, we present a new algorithm for 

the constrained estimation of genones. The algorithm can also be viewed as estimating 

a transformation of the speaker-independent models by maximizing the likelihood of the 

adaptation data. In contrast to previous adaptation schemes based on feature transfor- 

mations, our algorithm has the desirable property of being text-independent. It does not 

require the new speaker to record sentences with previously specified transcriptions, nor does 

it require a time warping between the new speaker's utterances and those uttered by the 



reference speakers. In Bayesian adaptation techniques, the limited amount of speaker-specific 

data is combined with the speaker-independent models in an optimal manner. Maximum 

a posteriori (MAP) reestimation for continuous Gaussian-mixture HMMs is equivalent to 

linearly combining the speaker-dependent sufficient statistics with the speaker-independent 

priors [16]. Typically, only the Gaussians of the speaker-independent models that are most 

likely to have generated some of the adaptation data will be adapted to the speaker. This 

behavior may be problematic for continuous HMMs with a large number of Gaussians, since 

only a small percentage of the Gaussians will be "seen" in the adaptation data. In contrast, 

our adaptation scheme can adapt a Gaussian without requiring training examples of this 

specific Gaussian to exist in the adaptation data. By using a constrained reestimation 

method, our algorithm is able to extrapolate and adapt Gaussians in a genone based on 

data that were most likely generated by other Gaussians of the same or other neighboring 

genones. 

This paper is organized as follows. Section 2 presents an algorithm for the constrained 

estimation of Gaussian mixtures based on the Expectation-Maximization (EM) algorithm. 

We give the solution for both the static case of a single random vector modeled by a 

Gaussian mixture density and the dynamic case of a vector process modeled using HMMs 

with Gaussian mixtures as output distributions. In Section 3 we discuss the application of 

the main algorithm to the speaker adaptation problem. Section 4 describes experiments and 

presents results on the WSJ corpus. Finally, discussion of results and conclusions appear in 

Section 5. 



2     Constrained Estimation of Gaussian Mixtures 

One speaker adaptation paradigm that fits well with the overall approach of continuous- 

density HMMs with shared Gaussian codebooks is to employ a transformation of the speaker- 

independent models to best correspond to the available adaptation data. Such a transfor- 

mation can be efficiently achieved by assuming that the Gaussians in each genone of the 

speaker-adapted system are obtained through a transformation of the corresponding speaker- 

independent Gaussians. This transformation can be either unique for each genone, or shared 

by different genones. We choose to apply the transformation at the distribution level, rather 

than transforming the data directly, since we can then use the EM algorithm to estimate 

the transformation parameters by maximizing the likelihood of the adaptation data. The 

advantage of using the EM algorithm is that we can estimate the transformation from new- 

speaker data alone. This eliminates the need of some form of time alignment between the 

new-speaker data and the training- or reference-speaker data that previous transformation- 

based techniques needed [6, 18]. The estimation of the transformation can also be viewed as 

a constrained estimation of Gaussian mixtures. 

2.1    Estimation of a Single Gaussian-Mixture 

To better illustrate the constrained Gaussian estimation method, we first present the 

estimation formulae for a single Gaussian-mixture density. In Section 2.2 we extend the 

method for mixture densities as observation distributions in hidden Markov models. Let us 

consider a Gaussian mixture density of the form 

/(x; 9) = f(x; A, b) = £ P(a*)tf (s; Arm + b, ASiAT), (1) 



where the model parameters are 6 = [A, b], Nw is the number of mixture components, and 

we have the constraint that 

f>(^) = l- (2) 
t=i 

We assume that the parameters [m,-,5j,i = 1,...,NW] are fixed, and that the matrices Si 

are positive definite. 

This model is equivalent to assuming that the random vector x is obtained through an 

affine transformation x = Ay + b from the unobserved vector y that has a known mixture 

density 

9(y) = IlH"i)N(y;mi,Si). (3) 
«=1 

ML estimation of the constrained Gaussian-mixture model is, therefore, equivalent to esti- 

mating the regression parameters A, b using only observations of the dependent variable and 

the knowledge of the distribution of the unobserved variable y. 

As shown in [21], the EM algorithm can be used to obtain ML estimates of the parame- 

ters of a Gaussian-mixture density in the unconstrained case. The EM algorithm can also be 

used to estimate the model parameters [A, b] in the constrained case. At each EM iteration, 

the new parameter estimates are obtained by maximizing the auxiliary function [7] 

9n = argmax£{logP(#,ß|0)|#,0o}, (4) 
6 

where 60 = [A0, b0] are the previous parameter estimates, X denotes the collection of observed 

samples x, and Vt denotes the collection of the corresponding unobserved mixture indices a;,-. 

Each iteration of the EM algorithm involves an expectation (E-step) and a maximization 

step (M-step). In the Appendix we show that the E-step involves the computation of the 

sufficient statistics 

fii   =   —J2P{ui\Ao,b0,x)x (5) 



Si   =   — £P(w.-K,60,x)(x-/*,•)(*-frf (6) 
ni    x 

ni     =    J2Hui\Ao,b0,x), (7) 
x 

where the posterior probabilities can be computed using Bayes' rule 

_,    ,,    ,      v ?(uj)N(x; A0mj + 6„ A05,4f) 
PMA°- 6°-x)=ja^w^+tiHi- (8) 

For the one-dimensional case, and therefore for the case of diagonal covariances and a 

diagonal scaling matrix A, the quantities 5,- = s], A = a, S,- = öf and £,-, m, 6 are scalars. In 

this case, the M-step is equivalent to solving the following quadratic equation (see Appendix): 

(E"0«2-(E^)^-(E^)^+(E!^i)«+2E^>-(E"^)=o 
.'=1 j=l *• i=l     *«' «=1       *» i=l    Ä» t=l *»' 

(9) 

where the offset 6 is given by 

It is straightforward to verify that this equation has real roots. For the general multidimen- 

sional case—that is, when the covariances and the scaling matrix A are not diagonal—the 

M-step is equivalent to solving a system of second order equations. Iterative schemes may 

be used in the general case. In this paper, we deal only with independent constraints, that 

is, with diagonal covariances and scaling matrices. 

2.2    Estimation of a Gaussian Mixture Density in HMMs 

The constrained estimation of Gaussian mixtures can be easily extended for the dynamic 

case of time-varying processes with an underlying discrete Markovian state. Specifically, 

consider the finite-state process [st,t = 1,...,T], which can be modeled as a first-order 

Markov chain with transition probabilities a,j = V(st = j\st-i = i).   This state process 
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can generate an observed process [xt] through a stochastic mapping P(xt\st), and the overall 

model for the process [xt] is a hidden Markov model. In the reestimation formulae for HMMs 

with Gaussian mixture output distributions of the form 

Nu, 

p(Xt\st) = £PM*)i\T(*t; A{g)mi{9) + b(g),A(g)Si(g)AT(g)), (11) 

g is the Gaussian codebook (or genone) index. Thus, we assume that we have a collection 

of genones indexed by g = 1,..., Ng, and that the mapping from HMM state st to genone is 

g = 7(st). The inverse image 7-1(<7) is the set of HMM states that map to the same genone 

(i.e., the set of HMM states that share the same mixture components). As in the static case, 

we assume that the parameters rrii(g), Si(g),i = 1,..., Nu are fixed, the matrices Si(g) are 

positive definite, and the free parameters in the mixtures are the transformation parameters 

A(g), b(g) which, for simplicity, are assumed to be genone-dependent. 

The EM algorithm can be used to estimate the parameters of this model. The un- 

observed variables are the HMM state and the mixture index, and the EM algorithm in 

this case takes the form of the well-known Baum-Welch algorithm [3]. The formulae for 

the conventional reestimation of HMMs with Gaussian mixture densities can be derived by 

applying the Baum-Welch algorithm; see, for example, [13]. In our case, since we constrain 

the estimation of the Gaussians, the reestimation formulae are different, and the training 

procedure using the Baum-Welch algorithm is as summarized below. 



1. Initialize all transformations with Ao(g) = I, &o(<7) = 0, g = 1,..., Ng. Set k = 0. 

2. E-step: Perform one iteration of the forward-backward algorithm on the speech data, 

using Gaussians transformed with the current value of the transformations 6k(g) = 

[Ak(g),bk(g)]. For all component gaussians and all genones g collect the sufficient 

statistics 

Hg) = 4-TE   E   p(«)M)*t (12) 
ni\9)   t  ate~,-Hg) 

2i{g) = -kE   E   p(st)M9)(xt-M9))(xt-Mg))T        (13) 
ni\9)   t   st€-,-Hg) 

<g)  =  E   E   MM), (14) 
* ste7-1(a) 

where p(st) = p(st\X, \k) is the probability of being at state st at time t given X and 

the current HMM parameters A^, and <f>it(g) is the posterior probability 

<f>it{g) = H"i(9)\M9),h(g),xt,st). (15) 

3. M-step:   Compute the new transformation parameters [j4jfc+i(<7),&jt+i(#)] using the 

estimation formulae (9), (10). 

4. If another iteration, goto (2). 
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3     Application to Speaker Adaptation 

3.1    Adaptation of Gaussian Codebooks 

For continuous mixture-density HMMs with a large number of component mixtures it 

is impractical to assume that there are enough adaptation data available for independent 

reestimation of all the component densities. The constrained estimation that we have 

presented can overcome this problem, since all the components within a mixture (or a group 

of mixtures, if there is tying of transformations) are transformed jointly. To see how this 

method can be applied for adaptation, we assume that the speaker-independent (SI) HMM 

model for the SI vector process [yt] has observation densities of the form 

N, 

I 
t'=l 

psi(yt\st) = £PM5t)AT(yt;mt(<7),S,(<7)). (16) 

Adaptation of this system can be achieved by jointly transforming all the Gaussians of 

each genone. Specifically, we assume that, given the genone index of the HMM state st, the 

speaker-dependent vector process [xt] can be obtained by the underlying process [yt] through 

the transformation xt = A(g)yt + b(g). In this case, the speaker-adapted (SA) observation 

densities have the form 

PsA(xt\st) = EPH*)JV(*t; AG/MflO + b(g), A(g)Si(g)Är(g)), (17) 

and only the transformation parameters A(g), b(g),g = 1,..., Ng need to be estimated during 

adaptation. 

The above algorithm can also be modified to monotonically approach speaker-dependent 

(SD) training as the amount of adaptation speech is increased. We can achieve this by 

setting a threshold and reestimating without constraints all individual Gaussians for which 

the number of samples assigned to them is larger than the threshold. Hence, all Gaussians 
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with a sufficiently large amount of adaptation speech are reestimated independently, whereas 

Gaussians with little or no adaptation data are adapted in groups. In addition, if the total 

amount of adaptation data for a particular genone is less than a prespecified threshold, then 

an identity transformation is used for all of its Gaussians. 

Since our Gaussian adaptation algorithm is an instance of the Baum-Welch algorithm for 

HMMs with constrained mixture densities, it can be implemented efficiently. Specifically, the 

sufficient statistics (12) through (14) are the same as in the case of unconstrained mixture 

densities. Hence, the E-step at each iteration of the adaptation algorithm requires the 

computation and storage of these statistics and is equivalent to the E-step of the Baum- 

Welch algorithm for unconstrained mixture densities. The computational requirements of 

the M-step are very small compared to the E-step. 

3.2    Adaptation of Mixture Weights 

The constrained estimation algorithm that we described in the previous sections can 

be used to adapt the component densities of the observation distributions. Another set of 

parameters in a continuous-mixture HMM speech recognizer is comprised by the mixture 

weights V(u>i\st). When there is a high degree of sharing of the mixture components among 

different HMM states—that is, when the number of genones Ng is small—then the distri- 

butions corresponding to different HMM states are mainly distinguished by the different 

mixture weights. In HMMs with less sharing, as Ng increases, there is a shift in focus and 

the discrimination between different states is mainly achieved using the component densities. 

Hence, the significance of adapting the mixture weights varies, depending on the type of 

sharing. Since systems with a small degree of sharing usually perform better, adaptation of 

the Gaussians may have a greater effect on recognition performance. Nevertheless, it may 

12 



still prove beneficial to incorporate in the adaptation scheme some form of adaptation of the 

mixture weights. 

The technique that we chose to use can be characterized as "pseudo-Bayesian". Specifi- 

cally, after adapting the component Gaussians as described in Section 3.1, an additional pass 

through the adaptation data is performed using the forward-backward algorithm. The SD 

counts for the mixture weights are accumulated, and linearly combined with the SI forward- 

backward counts, in a fashion similar to the one reported in [10]. The weighting factor that 

is used determines the relative prominence given to the adaptation data. The algorithm can 

also be viewed as a pseudo-Bayesian adaptation scheme, where the relative contribution of 

the SI prior knowledge and the SD adaptation data is determined experimentally. 

4    Experiments 

We evaluated our adaptation algorithms on the large-vocabulary Wall Street Journal 

corpus [20]. Experiments were carried out using SRI's DECIPHER™ speech recognition 

system configured with a six-feature front end that outputs 12 cepstral coefficients (cx — Ci2), 

cepstral energy (CQ), and their first- and second-order differences. The cepstral features 

are computed from an FFT filterbank, and subsequent cepstral-mean normalization on a 

sentence basis is performed. We used genonic hidden Markov models with an arbitrary degree 

of Gaussian sharing across different HMM states as described in [8]. For fast experimentation, 

we used the progressive search framework [17]: an initial, speaker-independent recognizer 

with a bigram language model outputs word lattices for all the utterances in the test set. 

These word lattices are then rescored using speaker-dependent or speaker-adapted models. 

We performed two series of experiments, on native and nonnative speakers of American 

English, respectively. All experiments were performed on the 5,000-word closed-vocabulary 
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task, and are described below. 

4.1    Adaptation to Native Speakers 

To compare SI, SD and SA recognition performance on native speakers, we performed an 

initial study of our adaptation algorithms on the phase-0 WSJ corpus. We used phonetically- 

tied mixture HMM systems, with all allophones of the same context-independent phone 

sharing the same mixture components, that is, we used systems with one genone per phone. 

Speaker-independent systems were trained on 3,500 sentences from 42 male speakers. The 

different cepstral features were modeled as independent observation streams, and each code- 

book used 50 Gaussians for the vector features and 15 Gaussians for the scalar (energy) 

features. There was a total of 6,300 phonetic models, each with three states. The number 

of distinct output distributions was clustered down to 6,300 (a 3-fold reduction) using state- 

based clustering [11], since a more compact system with fewer parameters is better suited for 

adaptation. The performance of the adaptation algorithm was evaluated on 100 sentences 

from each of six male speakers (001, 00b, 00c, OOd, 400, and 431) for varying amounts 

of training/adaptation sentences. The SI word error rate for these speakers was 15.51%, 

including deletions and insertions. We also evaluated the SD performance by separately 

training a speaker-dependent system for each one of the six speakers using 600 utterances, 

and found that the SD error rate was 11.51%. We then tested the adaptation algorithm 

using a small amount of adaptation data (40 utterances), and the word error rate after 

adaptation was 13.60%. Thus, with 40 adaptation sentences, 60% of the gap between SI and 

SD performance was overcome. 

We then evaluated the SA system performance for varying amounts of adaptation data, 

using three of the speakers. The results are summarized in Figure 1. With 100 adaptation 
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sentences, the adaptation scheme achieves the performance of a speaker-dependent system 

that used 6 times as much training data. When all the SD training data are used as 

adaptation data, the SA system achieves a 50% reduction in error rate over the SI system 

and a 25% reduction over the SD system. 

It is difficult to compare our work to other adaptation schemes that have appeared in 

the literature. The results are usually confounded by differences in: 

• the task complexity.  This includes vocabulary size, use of a strict language model, 

noise conditions, etc. 

• the type of recognition system and its baseline accuracy. Systems that already exhibit 

a good SI performance may show small improvement due to adaptation 

• the fluency of the speakers and the test-sample size. As we will see in the following 

section, adaptation helps nonnative speakers significantly more than native speakers. 

In order to overcome some of these problems and compare our algorithm to previous 

work, we implemented the adaptation algorithm described in [22]. This algorithm is only 

suitable for tied-mixture systems: adaptation of the Gaussians is achieved using uncon- 

strained Baum-Welch reestimation and there is no mixture-weight adaptation. We built an 

SI tied-mixture system and found that the SI and 40-sentence SA word error rates on the six- 

speaker test set were 17.0% and 16.1%, respectively. Both of these numbers are higher than 

the 15.5% and 13.6% word error rates that we observed using SI phonetically-tied mixtures 

and our adaptation algorithm. 

Because of the reasons we mentioned above, we can only make qualitative comments 

in comparing our algorithm to previous work by others. In [16], Lee and Gauvain obtained 

similar SD and SA recognition performance (3.5% word error rate) with 600 sentences on the 
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1,000-word ARPA Resource Management (RM) task using context-independent models. Our 

adaptation algorithm achieved 25% lower error than SD training when 600 WSJ sentences 

were used. With 40 adaptation sentences, their method reduced the SI word error rate by 

33% (from 6.3% to 4.2%). In our case we observed a 12% reduction. However, both of these 

differences may be attributed to the different domains, the amount of initial SI training data 

and the quality of the SI models. 

Huang and Lee [10] also reported adaptation results on the RM task. They used the 

simple Gaussian reestimation scheme proposed by Rtischev [22] and a "pseudo-Bayesian" 

adaptation method for the mixture weights that is similar to the one we used in our work. 

On a different test set from the one used by Lee and Gauvain, they reported a 4.3% SI 

word error rate and a 2.6% SD word error rate using 600 SD training sentences. Their SA 

results were 3.6%, 2.5% and 2.4% using 40, 300 and 600 adaptation sentences, respectively. 

Their error rates are, in general, lower than the ones in [16].   As a consequence, Huang 

and Lee's error-rate reduction using 40 adaptation sentences is smaller (16%) than Lee and 

Gauvain's, and is comparable to ours. Also, the Huang-Lee method achieves 600-sentence 

SD performance after 300 adaptation sentences, and the 600-sentence SA error rate is 8% less 

than the corresponding SD error rate. In our case, we achieved 600-sentence SD performance 

after 100 adaptation sentences and our 600-sentence SA error rate is 25% lower than the 

corresponding SD error rate. 

4.2    Adaptation to Nonnative Speakers 

Speaker adaptation becomes a very important technology for outlier speakers, since the 

SI error rate is too high for any practical application2. In testing the adaptation algorithm on 

2This was an additional motivation for all three authors of this paper, who are nonnative speakers of 

American English. Two of the authors are actually included in the test sets used in this section's experiments. 
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the "spoke 3" task of the phase-1 Wall Street Journal corpus [14], we focused on improving 

recognition performance for nonnative speakers of American English using adaptation. Since 

the phase-1 corpus was available during this series of experiments, the SI systems were built 

using 17,000 training utterances from 140 male speakers. To reduce computing requirements 

we tuned the algorithm using the five male speakers in the phase-1 WSJ development data 

set. The evaluation data set was run only once at the end of the development phase. The 

data set includes 40 test sentences and 40 phonetically balanced adaptation sentences per 

speaker. The speakers were selected according to their fluency in English, covering strong 

to light accents. 

We first tested four different systems to determine the optimal degree of Gaussian 

sharing for this task. All of the systems used 11,932 context-dependent phonetic models, 

each with three states. Context dependency was modeled only within words, since we had 

found in preliminary experiments that modeling coarticulation across word boundaries does 

not improve recognition performance for nonnative speakers. The numbers of genones used 

in these systems were 40 (1 genone per phone), 200, 500, and 950. Each genone consisted of a 

mixture of 32 Gaussian distributions. The SI and SA performance is shown in Table 1. The 

adaptation was applied sequentially to the Gaussian distributions and the mixture weights. 

In genonic HMMs, an arbitrary degree of mixture tying across different HMM states 

can be selected through an agglomerative clustering procedure [8]. If the degree of tying 

is small, and consequently the number of genones is large (as in the 500- and 950-genone 

systems in Table 1), then a large number of transformations may have to be estimated during 

adaptation. We can overcome this problem by using tying of the transformations across 

different genones, and the agglomerative clustering scheme used for the genone construction 

is very suitable for this. Each node in the tree that is generated during the clustering 

procedure corresponds to a set of states, with the leaves of the tree corresponding to single 
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HMM states. The degree of tying used in a particular system can be represented by a cut 

through the tree. The location of the cut is determined by the stopping criterion of the 

agglomerative clustering. Thus, if we want to use a smaller number of transformations than 

the number of genones in the system, we can somewhat relax the stopping criterion (i.e., 

cluster more aggressively) and determine a second cut, at a higher level through the tree. 

All nodes of the original cut (i.e., all genones) that fall under the same node of the new cut 

can share the same transformation. The third column in Table 1 indicates the number of 

transformations used in reestimating the Gaussian distributions. In the first two systems we 

used one transformation per genone. In the remaining two systems with large numbers of 

genones, we grouped the transformations in order to reduce the number of parameters to be 

estimated. 

The SI word error rates for the various systems were similar, ranging from 28.7% to 

30.1%. By using tying of the transformations during adaptation for the 950- and 500-genone 

systems and reducing the number of transformations from 950 and 500 to 200, the SA error 

rates were reduced from 17.7% and 16.6% to 15.8% and 15.1%, respectively. The SA error 

rate of 15.1% was the lowest overall for all the systems that we examined, and the average 

improvement due to the adaptation algorithm for the five speakers was 47%. To evaluate 

the relative contribution of the two stages of our adaptation scheme, we evaluated the SA 

error rate for our best system with the mixture-weight adaptation disabled. We found that 

by adapting the Gaussian codebooks only using the constrained estimation method, the 

SA word error rate was 15.6%. Hence, for continuous HMMs most of the performance gain 

during adaptation is achieved by adapting the Gaussian codebooks. Table 2 shows the results 

for the November 1993 ARPA evaluation set [19] on the 500-genone system. In this case the 

improvement is 27%. 

To compare the nonnative performance before and after adaptation to that of native 
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speakers, we evaluated the same four systems on the same speakers that we used in Sec- 

tion 4.1. The results are summarized in Table 3. There we see that the SI performance of the 

more detailed systems (with a larger number of Gaussian distributions) is significantly better 

than that of the less detailed ones. This is an important difference from the nonnative results. 

A plausible explanation for the nonnative case is that the additional detail of the more 

continuous systems is not needed if the speakers are different from the training population. 

We also observe that for natives the SA error rate using 40 utterances is only 7% less than 

the SI one, as opposed to the 30% to 50% improvement that we observed for nonnatives. 

Moreover, the improvement is less than the 12% decrease in word error that was observed 

for the native speakers in the experiments with the phase-0 WSJ corpus, and is not uniform 

across speakers. Since the phase-1 WSJ corpus has 5 times more training data than the 

phase-0 corpus, we can conclude that, when a large amount of SI training data is available, 

adaptation is not nearly as effective for typical speakers as it is for outlier speakers. 

The SI and SA word-error rates for the best systems and for both native and nonnative 

speakers are summarized in Table 4. The SI word error rate for nonnative speakers is 2.5 

to 3 times less than that of native speakers. However, after adapting with 40 adaptation 

utterances, the nonnative SA error rate is approximately a factor of 1.5 higher than that of 

native speakers. 

5    Summary 

We have presented a new algorithm for the maximum-likelihood (ML) estimation of a 

mixture of Gaussians subject to the constraint that all means and covariances are obtained 

through a transformation (that needs to be estimated) from a fixed set of component 

densities.    This constrained estimation method is well suited to the speaker adaptation 
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problem for continuous mixture-density HMMs with a large number of component densities 

that are hard to estimate in an unconstrained fashion from a small amount of adaptation 

data. 

We tested our algorithm on the large-vocabulary WSJ corpus on both native and 

nonnative speakers of American English, and on a variety of recognition systems. We found 

that for native speakers the recognition performance after adaptation is similar to that of 

speaker-dependent systems that use 6 times as much training data. With small amounts of 

adaptation data (40 utterances with an average length of 10 seconds) the decrease in word- 

error rate for native speakers is approximately 7% and is much larger for nonnative speakers, 

ranging from 30% to 50%. This is a very important result, since the speaker-independent 

word-error rates for outlier speakers, like nonnative speakers, can be 2.5 to 3 times as high 

as those of native speakers. With speaker adaptation, outlier and nonnative speakers can 

use automatic speech recognition at performance levels similar to those of native speakers. 

Thus, the algorithm that we propose can significantly increase the usability of continuous 

mixture-density HMM systems. Moreover, we used the WSJ database and our results can 

serve as a benchmark to other researchers that want to evaluate their nonnative-speaker 

adaptation techniques on the same data. 

We also studied the relationship between adaptation behavior and degree of mixture 

sharing in continuous HMM systems. We found that, with a large amount of speaker- 

independent training, more continuous systems with a large number of Gaussians perform 

better on typical native speakers in both their speaker-independent and speaker-adapted 

modes. However, the situation is different for atypical, nonnative speakers. For those, 

increasing the detail in the modeling of context dependencies is not as beneficial, since the 

nonnative speakers are less likely to follow the typical coarticulation patterns observed in 

native speakers. The result is that more compact systems actually exhibit better adaptation 
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performance because there are fewer parameters to adapt. 

Since the results of this study are very encouraging, we are currently investigating 

methods to extend our adaptation algorithm to work in an unsupervised manner, that is, 

when the prompting text is not available for adaptation. 
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APPENDIX: Derivation of the Expectation and Max- 

imization Steps 

To apply the Expectation-maximization (EM) algorithm to the estimation of a Gaussian 

mixture, we can rewrite the auxiliary function as 

E{logV(X,Ü\6)\X,eo} = ^,£?{(Ji\xieoWo6H^uO) + log?{ui\$)] (18) 
X    t'=l 

Since the parameters 6 consist of the transformation parameters [A, b], the second term in 

the summation does not depend on 6, and hence at each EM iteration we need to maximize 

the first term only. 

It is well known that the joint log-likelihood of a collection of samples X drawn inde- 

pendently from a multivariate normal distribution with mean // and covariance S can be 

expressed as [1] 

logP(*) = -|log |S| - |(p - HfYr\ii -fi)- ^traceiS-1!!} (19) 

where //, S are the sample mean and covariance, respectively, and n is the number of samples. 

A similar expression can be derived for the first term of the expected log-likelihood in (18). 

We first note that this expectation can be written 

£{6-X)   =   E{\og?(X\Sl,e)\X,0o} (20) 

(21) 
Nu, 

= J2ZH^\^o0)\--\og\i:i\--(x-ßi)
TE-1(x-ixi) 

x   t—1 

. [—log |S.-| + i*TErV.- + \fiV71* = E£PM*A) 
X    J=l 

— -X   ZJ{    X — -fa £»,•    [i, (22) 

where the means and covariances are constrained /J,- = Ami + 6, S,- = ASiAT. By expanding 
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the summation above, we can write 

Nu 

i=ll     l      x Z      X 

4 x ^   x 

-kEPH*A)}Ä"V.- • 
^        X J 

We can define the sufficient statistics 

ni   =   Ep(w«'l^0'6o'x) 

Jii   =   -Vp(wi|4,60,i)i 
ni   x 

nix 

and rewrite equation (23) above as 

moo) = Et-yiogi^i-y^-^sr^^-^ + Y^sr1^ 

-^EP^A)*
7
^ 

Nu, 

= E 
1 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

-lloglSil-l^-zz.-fS-1^-^) 

—-txa.ce{'L~1Q2v{uji\x,60)xxT - n,-ft/if]} 
^ x -1 

= - E T floS lS'i + ^ - ^)TEr1(^ - fc) + traceiS"1!;,} 

where in the second equation above we used the matrix identity xTAx = trace{AxxT} for 

a matrix A and a vector x, and in the third equation we used the definition of the statistic 

£,-. The equations for the computation of the sufficient statistics comprise the E-step of the 

algorithm, and are summarized in (5) through (7). 

To derive the M-step of the algorithm, we first rewrite Equation (29) using the trans- 

formation parameters 

N 

m *.)   =   -ET log \Si\ + log \A\2 + (A-1 fr -mi- A^bf' S;\A-xJa - mt- - A~x b) 
»=i ^ ■■ 
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+trace{A-T5'-1A-1E,} (30) 

where we have assumed that the transformation matrix A has full rank. By taking the 

gradient of C{9; 0o) with respect to the transformation parameters A, b we find the following 

system of equations: 

£ n^A - Sf1 [A-'ifii -b)- m] (ft - bf - S^A-1^} = 0 (31) 

b = [£ n^S-'A-1}_1 [I] ntA-T5-M-1(/ii - Am,)]. (32) 

Under the assumption of diagonal covariance matrices and diagonal transformation 

matrices, the multidimensional case is equivalent to a set of one-dimensional problems that 

can be solved independently. The auxiliary function can be written in this case as 

rta a\ %Tnin       2  , ,       2  ,   (fii ~ ami ~b?   ,    °1 i (<i<i\ C{0; 8o) = -22 j[l°z si + los a + ^| + ^?i- ^33^ 

By maximizing this quantity with respect to the transformation parameters a, b we can easily 

derive equations (9), (10). 
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Speaker Independent 
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Number of adaptation sentences 
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Figure 1:   Speaker-independent, speaker-dependent (650 training sentences) and speaker- 

adaptive (varying number of sentences) word error rates for native speakers. 
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Speak er 4n0 4n3 4n5 4n9 4n0 AVG/SUM 

Num. sentences 41 42 41 42 40 206 

Num. words 719 696 664 668 678 3425 

Type Num. genones Num. transf. 

SI 40 - 50.3 43.1 23.6 17.7 12.5 29.8 

SA 40 40 24.1' 18.2 17.9 12.4 9.1 16.5 

SI 200 - 49.4 43.8 24.2 17.1 14.2 30.1 

SA 200 200 21.4 18.7 18.4 12.0 10.5 16.2 

SI 500 - 49.9 40.5 22.3 14.7 14.2 28.7 

SA 500 200 20.2 15.8 16.6 12.3 10.5 15.1 

SA 500 500 20.0 18.7 17.8 15.1 11.2 16.6 

SI 950 - 50.5 44.7 20.5 15.3 14.4 29.5 

SA 950 200 21.1 19.0 16.1 12.0 10.3 15.8 

SA 950 950 24.2 21.7 18.8 13.5 9.7 17.7 

Table 1: Speaker-independent (SI) and speaker-adapted (SA) word error rates for the 

nonnative speakers of the WSJ1 male development set for various degrees of tying and 

numbers of transformations. 
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Speaker 4nd 4ne 4nf 4ni 4nn AVG/SUM 

Num. sentences 42 42 41 41 42 208 

Num. words 794 755 767 658 709 3683 

SI 30.7 31.0 25.0 13.4 28.6 26.1 

SA 19.0 24.5 19.7 10.2 21.0 19.1 

Table 2: Word error rates for the nonnative speakers of the November 1993 WSJl evaluation 

set. 
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Speak ST 001 00b 00c OOd 400 431 AVG/SUM 

Num. sentences 50 50 50 50 50 50 300 

Num. words 661 643 719 799 928 707 4457 

Type Num. genones 

SI 40 7.4 16.2 12.7 17.0 11.2 14.9 13.2 

SA 40 6.7 14.8 11.3 15.3 11.0 14.1 12.3 

SI 200 5.9 15.9 12.0 17.1 11.5 12.4 12.5 

SA 200 6.2 16.2 13.1 13.9 10.9 12.9 12.2 

SI 500 5.4 14.8 11.7 15.8 10.0 12.2 11.7 

SA 500 4.8 14.8 12.0 12.8 10.0 11.3 10.9 

SI 950 4.1 13.5 10.4 16.2 10.3 11.5 11.1 

SA 950 3.8 13.7 11.0 12.4 9.8 10.9 10.3 

Table 3:   Speaker-independent (SI) and speaker-adapted (SA) word error rates for native 

speakers for various degrees of tying. 
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SI      SA 

Natives 

Non natives 

11.1    10.3 

28.7   15.1 

Table 4: Speaker-independent (SI) and speaker-adapted (SA) word error rates for native and 

nonnative speakers of American English. 
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ABSTRACT 

Adapting the parameters of a statistical speaker-independent continuous-speech recog- 

nizer to the speaker and the channel can significantly improve the recognition perfor- 

mance and robustness of the system. In continuous mixture-density hidden Markov 

models the number of component densities is typically very large, and it may not be feasi- 

ble to acquire a sufficient amount of adaptation data for robust maximum-likelihood esti- 

mates. To solve this problem, we have recently proposed a constrained estimation 

technique for Gaussian mixture densities. To improve the behavior of our adaptation 

scheme for large amounts of adaptation data, we combine it here with Bayesian tech- 

niques. We evaluate our algorithms on the large-vocabulary Wall Street Journal corpus for 

nonnative speakers of American English. The recognition error rate is approximately 

halved with only a small amount of adaptation data, and it approaches the speaker-inde- 

pendent accuracy achieved for native speakers. 



1 INTRODUCTION 

Automatic speech recognition performance degrades rapidly when there is a mismatch 

between the testing and the training conditions, under which the recognizer parameters 

were estimated. It may not always be feasible to have consistent conditions in the testing 

and training phases. For example, in large-vocabulary dictation applications the speaker- 

independent performance degrades dramatically for outlier speakers, such as normative 

speakers of the recognizer language. Since modem large-vocabulary speech recognizers 

have millions of free parameters, it is not practical to collect large amounts of speaker- 

dependent data and retrain the recognizer models. Similarly, it is desirable to avoid the 

expense of collecting additional data when the recognizer is going to be used on speech 

transmitted through a different channel than the one used in training. Such problems may 

be solved by adapting the recognizer models, using much smaller amounts of adaptation 

data than those used in conventional training techniques. In this paper we focus on adapt- 

ing the models to the speaker, although the techniques we describe can also be used at 

other levels [1]. 

One family of adaptation approaches attempts to match the new speaker's observations to 

the speaker-independent training data by transforming the new speaker's feature space 

[2] [3] [4]. The transformation approach has the advantage of simplicity. In addition, if the 

number of free parameters is small, then transformation techniques adapt to the user with 

only a small amount of adaptation speech (quick adaptation). A disadvantage of transfor- 

mation methods is that they are usually text-dependent, that is, the new speaker must 

record sentences with the same text recorded previously by some reference speakers. 

Moreover, transformation methods may not take full advantage of large amounts of adap- 

tation data. 

A second family of adaptation algorithms follows a Bayesian approach, where the 

speaker-independent information is encapsulated in the prior distributions [5][6]. The 

Bayesian approach is text-independent, and has the nice property that speaker-adaptive 

performance will converge to speaker-dependent performance as the amount of adaptation 

speech increases. However, the adaptation rate is usually slow. 

2 



In this paper we present adaptation schemes that combine the quick adaptation character- 

istics of transformation-based methods with the nice asymptotic properties of Bayesian 

methods. We first present a transformation-based method for continuous mixture-density 

hidden Markov models (HMMs) that was introduced in [7]. Adaptation is achieved via a 

transformation of the speaker-independent observation densities, and the transformation 

parameters are obtained using the maximum-likelihood (ML) criterion. The number of 

transformation parameters can be adjusted based on the available amount of adaptation 

data for quick adaptation. We then show how this algorithm can be combined with Baye- 

sian techniques. The combined method adapts to a new speaker with small amounts of 

adaptation data and takes better advantage of large amounts of adaptation data than the 

transformation method. 

2 TRANSFORMATION-BASED ADAPTATION 

Transformation-based approaches to speaker adaptation are typically text-dependent, that 

is they require the new speaker to record some utterances with predetermined text. These 

utterances are aligned to ones recorded by reference speakers, and mappings between the 

new-speaker and the reference-speaker acoustic spaces are obtained using regression tech- 

niques [3][4][8]. 

In [7] we presented a novel transformation-based approach to speaker adaptation for con- 

tinuous mixture-density HMMs. To eliminate mismatched ttaining and testing conditions, 

transformations can be applied either directly to the features, or to the speech models [9]. 

We chose to apply the transformation at the distribution level, rather than transforming the 

feature vectors directly, since we can then use the Expectation-Maximization (EM) algo- 

rithm [10] to estimate the transformation parameters by maximizing the likelihood of the 

adaptation data (see Figure la). One advantage of this approach is that the need for time 

alignment between new and reference speaker data is eliminated, and the transformation 

parameters can be estimated using new-speaker data alone. The estimation of the transfor- 

mation can also be viewed as a constrained estimation of Gaussian mixtures. 



For continuous mixture-density HMMs with a large number of component mixtures, it is 

impractical to assume that enough adaptation data are available for independent reestima- 

tion of all the component densities. The constrained estimation we presented in [7] over- 

comes this problem by applying the same transformation to all components of a particular 

mixture (or a group of mixtures, if there is tying of transformations). Gaussians for which 

there were no observations in the training data are adapted based on data that were most 

likely generated by other Gaussians of the same or other neighboring mixtures. 

To see how this method can be applied for adaptation, we assume that the speaker-inde- 

pendent (SI) HMM model for the SI vector process [yt] has observation densities of the 

form 

i 

where g is the index of the Gaussian codebook used by state st. 

Adaptation of this system can be achieved by jointly transforming all the Gaussians of 

each mixture. Specifically, we assume that, given the HMM state st, the speaker-depen- 

dent vector process [xt] can be obtained by an underlying process [yj through the 

transformation 

xt = Agy( + bg     . (2) 

Under this assumption, the speaker-adapted (SA) observation densities will have the form 

PSA (*< I si) =5> (<°i I J) ^V^A + hr A^«Xj (3) 
i 

and only the parameters Ag,bg,g = 1,..., N need to be estimated during adaptation, 

where N is the number of distinct transformations. The same transformations can be 

applied to different HMM states, and this tying of transformations can be used to optimize 

performance based on the amount of available adaptation data. The transformation param- 

eters can be estimated using the EM algorithm. The reestimation formulae for the transfor- 

mation parameters are derived in [7] and are summarized below. 



1. Initialize all transformations with A (0) = I,b(0)=0,g = 1, ...,N . Set k=0. 

2. E-step: Perform one iteration of the forward-backward algorithm on the speech data, 

using Gaussians transformed with the current value of the transformations 

Ag (k), bg (k) . For all component Gaussians and all mixtures g, collect the sufficient 

statistics 

(4) 
'*»,', 

where yt (st) is the probability of being at state st at time t given the current HMM 

parameters, the summation is over all times and HMM states that share the same mix- 

ture components, and <]>,., (st) is the posterior probability 

$,.,(*,) = p{mig\Ag{k),bg{k),xt,s^   . (5) 

3. M-step: Compute the new transformation parameters. Under the assumption of diag- 

onal covariance and transformation matrices, the elements a and b of 

Ag (k + 1), b (k + 1) can be obtained by solving the following equations for each g 

Z«,H - X 
(       n.\ 

\  i V   '   °i  I 

i,2- 
n.u. "\ 

/ a. , 
1-9 ^ 1 

b = 

2 
v '    G;    y 

n.fi. 
b- 

2     2} 
p.. +C. 

i     J 

= 0 

(6) 
n.U-A 

Z^-« 
v «■ o. i   C.   j 

/ X-i 
< a, , 

n 9 

where for simplicity we have dropped the dependence on g. The variables \it, cit ft,., 3,. 

are elements of the vectors and diagonal matrices \iig, "Lig, p^, Lig, respectively. 

4. If the convergence criterion is not met, go to step 2. 



Once the transformation parameters are determined, the constrained ML estimates for the 

means and covariances can be obtained using •*e> 

U = A    LL   +D Vtg ™g *ig     ug 

CML _        -       T 
Lig       ~ Ag^igAg 

3 COMBINING TRANSFORMATION AND BAYESIAN- 
BASED ADAPTATION 

In Bayesian adaptation techniques the limited amount of adaptation data is optimally com- 

bined with the prior knowledge. With the appropriate choice of the prior distributions, the 

maximum a posteriori (MAP) estimates for the means and covariances of HMMs with 

single-Gaussian observation densities can be obtained using linear combinations of the 

speaker-dependent counts and some quantities that depend on the parameters of the prior 

distributions [5]. We use the term counts above to denote the sufficient statistics collected 

by performing one iteration of the forward-backward algorithm on the adaptation data. 

MAP estimates for the parameters of continuous mixture-density HMMs can be obtained 

in the same way, as shown in [6]. For example, the MAP estimate for the mean of the fth 

Gaussian in the HMM mixture density of the gth Gaussian codebook can be obtained 

using [6] 

MAP  = ^  ^ (g) 

'8 

where yt (sj is the probability of being at state st at time t given the current HMM param- 

' eters, and (j)/t (sf) is the posterior probability of the z'th mixture component 

<{>„ (J)  = P ((olg I xp st)  = 
?  *—f-   • (9) 

^p(Ujs\st)N(xt;iiJ8,ljg) 
j 

The quantities x., m-  are parameters of the joint prior density of the mixture parameters, 

which was chosen in [6] as a product of the Dirichlet and normal-Wishart densities. The 

parameter x-  is usually estimated empirically and can be used to control the adaptation 



rate. Similar estimation formulae can be used for the covariances of the Gaussians. Based 

on (8) and the similar formulae for the second-order statistics, an approximate MAP 

(AMAP) estimation scheme can be implemented by linearly combining the speaker-inde- 

pendent and the speaker-dependent counts (see Figure lb) for each component density 

AMAP     .    SI      , 1      ,,    JD nig      =^nig+ {\-X)nig 

where the superscripts on the right-hand side denote the data over which the following sta- 

tistics (counts) are collected during one iteration of the forward-backward algorithm 

(xXT)ig = £It (St) <$>it (*,) x/t . (II) 
t,s, 

The weight X controls the adaptation rate. Using the combined counts, we can compute 

the AMAP estimates of the means and covariances of each Gaussian component density 

from 

,   sAMAP 
AMAP \X)ig 

LL =   -  
r-'g AMAP 

T AMAP ■ (12) 

-AMAP  _   (XX )ig AMApf   AAfA^V 
ig ~ AMAP "ig        \ "ig        ) 

nig 

Similar adaptation schemes have also appeared for discrete HMMs [ll], and can be used 

to adapt the mixture weights in the approximate Bayesian scheme described here. 

In Bayesian adaptation schemes, only the Gaussians of the speaker-independent models 

that are most likely to have generated some of the adaptation data will be adapted to the 

speaker. These Gaussians may represent only a small fraction of the total number in con- 



tinuous HMMs with a large number of Gaussians. On the other hand, as the amount of 

adaptation data increases, the speaker-dependent statistics will dominate the speaker-inde- 

pendent priors and Bayesian techniques will approach speaker-dependent performance. 

We should, therefore, aim for an adaptation scheme that retains the nice properties of 

Bayesian schemes for large amounts of adaptation data, and has improved performance 

for small amounts of adaptation data. We can achieve this by using our transformation- 

based adaptation as a preprocessing step to transform the speaker-independent models so 

that they better match the new speaker characteristics and improve the prior information in 

MAP estimation schemes. To combine the transformation and the approximate Bayesian 

methods, we can first transform the speaker-independent counts using the transformation 

parameters estimated with the constrained ML method described in Section 2, 

(13) 

(xx )ig    = Ag{xx )igAg +Ag{x)igbg + bg(x )igAg + nigbgbg 

The transformed counts can then be combined with the speaker-dependent counts col- 

lected using the adaptation data 

,  . COM     -   ,   > CML       ,.,      « N /   v SD 
(x)ig    = X(x)ig    + (1-X)(x)ig 

TCOM TCML TSD    , (14) 
(XX )ig       = A (XX )ig      + ( 1 - A) (XX )ig 

COM     -     CML       ....    SD nig    =Xnig    + (1-X)nig 

and the combined-method models can be estimated from these counts using 

,   .COM 
COM \X/ie 

It. =     -2  
^'S COM 

nig . (15) 
T COM 

1 COM _   (XX )ig n
C0M( ,,C0M\ 

n 'g COM ^'g      \^'8      J 
ig 

This procedure is shown schematically in Figure lc. 



4 EXPERIMENTAL RESULTS 

We evaluated our adaptation algorithms on the Spoke 3 task of the phase-1, large-vocabu- 

lary Wall Street Journal (WSJ) corpus [12] [13], trying to improve recognition perfor- 

mance for nonnative speakers of American English. Each test set used in this section 

consists often nonnative speakers of American English whose first languages are broadly 

distributed across the major languages. Experiments were carried out using SRI's DECI- 

PHER     speech recognition system configured with a six-feature front end that outputs 

12 cepstral coefficients, cepstral energy, and their first- and second-order differences. The 

cepstral features are computed from a fast Fourier transform (FFT) filterbank, and subse- 

quent cepstral-mean normalization on a sentence basis is performed. We used genonic hid- 

den Markov models with an arbitrary degree of Gaussian sharing across different HMM 

states as described in [11]. The speaker-independent continuous HMM systems that we 

used as seed models for adaptation were gender-dependent, trained on 140 speakers and 

17,000 sentences for each gender. Each of the two systems had 12,000 context-dependent 

phonetic models that shared 500 Gaussian codebooks with 32 Gaussian components per 

codebook. For fast experimentation, we used the progressive search framework [15]: an 

initial, speaker-independent recognizer with a bigram language model outputs word lat- 

tices for all the utterances in the test set. These word lattices are then rescored using 

speaker-adapted models. We used the baseline 5,000-word, closed-vocabulary1 bigram 

and trigram language models provided by the MIT Lincoln Laboratory. The trigram lan- 

guage model was implemented using the N-best rescoring paradigm [16], by rescoring the 

list of the N-best sentence hypotheses generated using the bigram language model. 

In the first series of experiments we used the bigram language model. We first evaluated 

the performance of the transformation-based adaptation for various numbers of transfor- 

mations and amounts of adaptation data. As we can see in Figure 2, where we have plotted 

the word error rate as a function of the number of adaptation sentences, multiple transfor- 

mations outperform very constrained schemes that use 1 or 2 transformations. The perfor- 

1. A closed-vocabulary language model is intended for recognizing speech that does not include 
words outside of the vocabulary. 



mance with 20 and 40 transformations is similar, and is better than the less constrained 

case of 160 transformations. However, as the amount of adaptation data increases, the 160 

transformations take advantage of the additional data and outperform the more con- 

strained schemes. A significant decrease in error rate is obtained with as little as 5 adapta- 

tion sentences. When adapting using a single sentence, the performance is similar for 

different numbers of transformations, except for the case of two transformations. The rea- 

son is that in our implementation a transformation is reestimated only if the number of 

observations is larger than a threshold; otherwise, we use a global transformation esti- 

mated from all data. Since most of the transformations are backed off to the global trans- 

formation for the case of a single adaptation sentence, the cases with different numbers of 

transformations exhibit similar performance. 

In Figure 3 we have plotted the word error rates of the combined scheme for the same 

numbers of transformations and adaptation sentences as in Figure 2. The systems used to 

obtain the results of Figure 2 are used as priors for the subsequent Bayesian estimation 

step, as explained in Section 3. We can see that the performance of the combined scheme 

becomes less sensitive to the number of transformations used, especially with larger num- 

bers of adaptation sentences. This behavior should be expected, since Bayesian schemes 

will asymptotically converge to speaker-dependent performance as the amount of adapta- 

tion data increases. However, when the number of adaptation sentences is small, it is 

important to select the appropriate number of transformations and provide the Bayesian 

step with good prior information. 

In Figure 4 we compare the word error rates of the transformation-only method with 20 

and 160 transformations, the approximate Bayesian method with conventional priors, and 

the combined method for various amounts of adaptation data. In the latter, the number of 

transformations was optimized on an independent test set according to the available 

amount of adaptation data. The transformation-only method with 20 transformations out- 

performs the Bayesian scheme with conventional priors when fewer than 10 sentences are 

used for adaptation, whereas the situation reverses as more adaptation sentences are used. 

This is consistent with our claim that transformation-based methods adapt faster, whereas 

10 



Bayesian schemes have better asymptotic properties. The performance of the transforma- 

tion approach for large amounts of adaptation data can be improved by increasing the 

number of transformations. In the same figure, we can also see the success of the com- 

bined method, which outperforms significantly the first two methods over the whole range 

of adaptation sentences that we examined. The transformation step provides quick adapta- 

tion when few adaptation sentences are used, and the Bayesian reestimation step improves 

the asymptotic performance. 

Finally, we evaluated the word error rate of our best-performing configuration on the 1993 

Spoke-3 development and evaluation sets, and the 1994 evaluation set of the WSJ corpus 

using a trigram language model. Our results for the 1993 test sets, presented in Table 1, 

represent the best reported results to date on this task [17]2. The speaker-independent 

word error rate for nonnative speakers is reduced by a factor of 2 using only 40 adaptation 

sentences. Using 200 adaptation sentences, the speaker-adapted error rate of nonnative 

speakers for the November 1994 test set is 8.2%. This number is comparable to the 

speaker-independent word error rate of the same recognition system on the 1993 develop- 

ment and 1994 evaluation sets of native speakers, which is 7.2% and 8.1%, respectively. 

The improvement in performance is bigger for certain outlier speakers. The first author of 

this paper is a nonnative speaker of American English with a particularly heavy accent 

His adaptation results for as many as 285 adaptation sentences (approximately 40 minutes 

of speech) are summarized in Table 2, where we see that his speaker-independent error 

rate decreases by a factor of 4 and 6 using 40 and 285 adaptation sentences, respectively. 

His speaker-adapted error rate of 7.1 % is comparable to the state-of-the-art performance 

for native speakers on this task. 

5 SUMMARY 

We combined the transformation-based adaptation algorithm that we presented in [7] with 

Bayesian methods. We presented experiments that compare the performance of transfor- 

2. The 1994 official ARPA benchmark results were not available when this paper was written. 

li 



mation and Bayesian adaptation for various amounts of adaptation data. Transformation- 

based adaptation performs well when only a limited amount of adaptation data is avail- 

able, but Bayesian methods are better as the amount of adaptation data increases. The 

combined method retains the quick adaptation characteristics of transformation methods, 

and takes advantage of the nice asymptotic properties of Bayesian schemes as the amount 

of adaptation data increases. The combined scheme clearly outperforms both Bayesian 

and transformation methods over the whole range of various amounts of adaptation speech 

that we examined. Our baseline results are the best reported to date on the nonnative- 

speaker task of the Wall Street Journal corpus, and our normative speaker-adapted perfor- 

mance is comparable to the native speaker-independent performance with sufficient 

amounts of adaptation speech. 
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TABLES 

Test Set 
#of 

Adaptation 
Sentences 

Speaker-independent 
rate (%) Speaker-adapted rate (%) 

Development 93 40 23.5 10.3 

Evaluation 93 40 16.5 10.0 

Evaluation 94 

40 

23.2 

11.3 

100 9.4 

200 8.2 

TABLE 1. Speaker-independent and speaker-adapted word error rates on various 
test sets of nonnative speakers using different amounts of adaptation data. 
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System # of Adaptation Sentences Speaker-adapted rate (%) 

Speaker Independent 0 42.7 

Speaker Adapted 
40 10.6 

.   285 7.1 

TABLE 2. Word error rates for development speaker 4n0 and various amounts of 
adaptation data 
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FIGURES 

a. Adaptation Using Model Transformation 

SI Models 

6 

b. Adaptation Using Bayesian Techniques 

c. Adaptation Combining Model Transformation and Bayesian 
Techniques 

SA ModelsN 
" I 

FIGURE 1. Hidden Markov model adaptation using transformation, Bayesian 
and combined techniques 
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40 
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.: 1 transform 

x: 2 transforms 

*: 20 transforms 

+: 40 transforms 

o: 160 transforms 
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Number of adaptation sentences 

35 40 

FIGURE 2. Word error rates for various numbers of transformations for the 
transformation-based adaptation 
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40 

35 

.: 1 transform 

x: 2 transforms 

*: 20 transforms 

+: 40 transforms 

o: 160 transforms 

10 15 20 25 30 35 
Number of adaptation sentences 

40 

FIGURE 3. Word error rates for various numbers of transformations for the 
combined method 
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Dashdot, o: Bayes only 

Dotted line: transforms only 

+: 20 transforms 

x: 160 transforms 

Solid, *: Combined 

Speaker Independent 

10 15 20 25 30 
Number of adaptation sentences 

35 40 

FIGURE 4. Word error rates for transformation-only, approximate Bayesian, and 
combined schemes 
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Training Issues and Channel Equalization Techniques 
for the Construction of Telephone Acoustic 

Models Using a High-Quality Speech Corpus 
Leonardo G. Neumeyer, Member, IEEE, Vassilios V. Digalakis, and Mitchel Weintraub 

Abstract— We describe an approach for the estimation of 
acoustic phonetic models that will be used in a hidden Markov 
model (HMM) recognizer operating over the telephone. We ex- 
plore two complementary techniques to developing telephone 
acoustic models. The first technique presents two new channel 
compensation algorithms. Experimental results on the Wall Street 
Journal corpus show no significant improvement over sentence- 
based cepstral-mean removal. The second technique uses an 
existing "high-quality" speech corpus to train acoustic models 
that are appropriate for the Switchboard Credit Card task over 
long-distance telephone lines. Experimental results show that 
cross-database acoustic training yields performance similar to 
that of conventional task-dependent acoustic training. 

I. INTRODUCTION 

IN many practical situations, an automatic speech recognizer 
has to operate in various but well-defined acoustic envi- 

ronments. The training corpus, however, is usually recorded 
with acoustic conditions that may not exactly match those 
encountered in the field. This mismatch between the acoustics 
of the training and testing data will degrade the accuracy of the 
recognizer. To overcome the data mismatch problem without 
collecting a new training corpus for each acoustic environment, 
we need a representation of the speech signal that is invariant 
across the acoustic spaces. Our purpose is to evaluate different 
techniques that facilitate the construction of acoustic models 
for speech recognition applications over a telephone channel. 

The traditional approach to building speech recognizers is 
to collect training data under conditions that match as closely 
as possible the environment in which the recognizer will be 
used. To attain the best possible recognition performance, 
researchers typically try to match the language characteristics 
and acoustic environment in the training and testing phases. 
However, if there is no mismatch between the language 
characteristics of the training and testing data, then one can 
alternatively use algorithms to correct the acoustic mismatch 
between the training and testing corpora. This approach elim- 
inates the need to collect speech data for each new acoustic 
environment. We will follow a twofold algorithmic approach 
to the acoustic mismatch problem. We first use a channel 

equalization algorithm that minimizes the channel mismatch 
between training and testing. We will compare a number of 
different equalization algorithms that remove some of the 
simplifying assumptions in the widely used sentence-based 
cepstral-mean removal, and show that the simple cepstral- 
mean removal algorithm is highly effective in correcting 
channel distortions. Once the channel distortion is reduced, our 
second main goal is to select a front end that is suitable for the 
testing conditions. In telephone applications, for example, the 
spectral bandwidth of the channel is limited to 3 kHz. Most 
of the spectral energy and the relevant information required 
for speech recognition are contained in this range. Hence, 
limiting the bandwidth can only increase the robustness of the 
recognizer to channel distortions and background noise. We 
show that by designing an appropriate front end for telephone- 
bandwidth speech, we are able to achieve with cross-database 
training similar performance to task-dependent training. 

The remainder of this paper is organized as follows. In 
Section II, we explore two different channel normalization 
algorithms. The first algorithm performs cepstral normaliza- 
tion in the log-DFT domain rather than in the log-filterbank 
domain. The second algorithm jointly estimates the channel 
and the HMM parameters during training, and the channel 
and most likely HMM state sequence during recognition. The 
performance of these two equalization algorithms is similar 
to the cepstral-mean removal algorithm on the alternate- 
microphone task of the Wall Street Journal (WSJ) corpus [1]. 
In Section III, we discuss techniques to train acoustic models 
with data recorded with a high-quality Sennheiser microphone 
for use over the telephone. 

II. CHANNEL EQUALIZATION 

Although cepstral-mean normalization (CMN) is a simple 
technique that has been effectively used for convolutional 
noise removal [2], it still entails a few simplifying assump- 
tions. In this section we present two novel algorithms that 
remove these assumptions. 

Manuscript received November 18, 1993; revised April 8. 1994. This work 
was supported by the Advanced Research Projects Aaencv under Contract 
ONR N000I4-93-C-0142 and ONR N000I4-92-C-1054. by Grant NSF IRI- 
9014829 from the National Science Foundation, and by SRI International 
internal research and development funds. 

The authors are with SRI International, Mcnlo Park, CA 94025 USA. 
IEEE Log Number 9403967. 

A. Spectral Equalization in the Log DFT Domain 

We first compare CMN to a different approach for the 
removal of stationary convolutional noise, "log-DFT mean 
normalization" (LDMN), and show that CMN is suboptimal 
when the cepstrum is computed as a linear transformation 
of the filterbank log energies. Specifically, we show that 
CMN can remove stationary convolutional noise only when 

! 063-6676/94504.00 © 1994 IEEE 



NEUMEYER ei <//.: TRAINING ISSUES AND CHANNEL EQUALIZATION TECHNIQUES 591 

the magnitude of the DFT of the channel's impulse response 
is constant in each spectral band of the filterbank. We also 
show that we can overcome this assumption by equalizing the 
spectrum in the log-DFT domain. 

In a filterbank-based front end, the DFT energies are inte- 
grated to compute the mel-filterbank energies. The log filter- 
bank energies are used to compute the mel-cepstrum, which is 
normalized by removing its mean in each sentence. 

Consider the following speech signal corrupted with sta- 
tionary convolutional noise 

y[t]=x[t]'h[t] •    (1) 

where x[t] is the clean speech sequence, h[t] is the impulse 
response of the channel, and y[t] is the distorted speech. After 
applying the Discrete Fourier Transform to a frame1 of speech, 
we get the spectral energy equation, 

Yk,n = Xk,nHk (2) 

where k is the DFT index and n is the frame index. The log 
filterbank energy is given by 

logFJ?„ = log^2wk,iXk<nHk (3) 
k 

where F^n is the filterbank energy for band I in frame n and 
Wk,i is a filter weight coefficient (this coefficient is zero outside 
the spectral band of the filter). If we assume that Hk is constant 
within the frequency band I 

Hk = Hi   Vh.wu^O (4) 

we can express the log filterbank energy as follows: 

log Fi,n £ log I Hi ]T WuXk,n ) 

= log Hi + log ^jT Wk,lXk,n (5) 
k 

and the constant term log Hi is eliminated with cepstral mean 
subtraction. 

To avoid the approximation in (4), we can simply normalize 
the spectrum in the log-DFT domain before the filterbank 
integration as follows: 

1 If~1 

Xk,n = exp(logYfc,„ --^ logFfc,m) 
m=0 

Yk.n Yk.n 

of the "clean" signal is an invariant quantity. This assumption 
is clearly violated when CMN is used to estimate the channel 
in short utterances. We present a different approach for jointly 
estimating the channel and the HMM parameters during train- 
ing, and for obtaining the channel and the most likely state 
sequence during recognition. 

In the cepstral domain, the observed speech signal corrupted 
by stationary convolutional noise can be written as 

y„ = h + xn (7) 

where h is the cepstrum of the channel response, xn is the 
clean speech cepstrum at each frame n = 0,.... N — 1 in 
the sentence, and we assume that the channel characteristics 
do not vary with time over a single sentence. In CMN the 
estimated channel h is computed as a time average of all the 
frames in the sentence 

,   N-l N-l 

n=0 n=0 

If we assume that the sequence xn is modeled using HMM's 
with Gaussian observation distributions, then CMN will give 
an unbiased estimate of h only when (1/iV) £ x„ is zero, or 
more generally, independent of the sequence of distributions 
that generated x„. 

In practice, the above average will not be constant since it 
depends on the sequence of distributions that generated x„, 
that is, on the transcription of the sentence. The CMN algo- 
rithm will interpret these fluctuations as channel variations, 
and remove them. In effect, this introduces an error in the 
true speech cepstrum, which may lead to recognition errors. 
A better approach is to try to jointly estimate the channel and 
the HMM parameters during training, and the channel and the 
state sequence during recognition. 

Let us first assume that the HMM state sequence [sn],n = 
0..... N — 1 is given. Then, the maximum-likelihood channel 
estimate is given by 

h = argmax   p(Y|5.0.h) (9) 
h 

where Y is the collection of observations, 5 is the state 
sequence, 8 are the HMM parameters, and h is the channel. 
For Gaussian output distributions, it can be shown [3] that 
this estimate is given by 

eMj?rlZ>$Yx,m)      Q" 
(6) 

h = 

where Xk,n is the equalized DFT energy, AT is the number of 
frames in the sentence, and Qk is the equalization factor for the 
&th DFT energy component in the current sentence. With this 
algorithm we can eliminate the stationary convolutional noise 
in the sentence without the assumption that Hi is constant 
within rhe spectral band. 

B. Join: Channel and Model Estimation 

Using CMN to perform channel equalization is tantamount 
to the underlying assumption that the sample cepstral average 

'The waveform is subdivided in a sequence of overlapping segments called 
frames, usally at intervals of 10-20 ms. Each frame is windowed before 
computing the DFT. 

E(C^))_1 
-i 

J](C(5n))-1(yn-M(5„))   (10) 

where the HMM output distribution 

p{xn\sn)=M\ß{sn):C{sn)) (11) 

is a multivariate normal distribution with a state dependent 
mean /x(.sn) and covariance C{nn). Hence, when the state 
HMM sequence is given, the channel estimate h can be 
obtained as a weighted combination of the deviations of the 
observed features from the means of the HMM output distri- 
butions that are specified by that state sequence. The weights 
depend on the covariances of these output distributions. For 
HMM's with continuous mixtures as output distributions, (10) 
can be applied when both the state and the mixture index are 
known. 
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TABLE I 
ERROR RATE AND DISTORTION FOR 18 WSJO DEVELOPMENT TEST SPEAKERS 

Spkr 
Index 

Sena 
Error 
Rate 

OMic 
Error 
Rate 

Error 
Ratio 

(OMic/ 
Senn) 

Mic 

Relative Distortion 

Cep 
D 

Cep 
DD 
Cep 

Egy D 
Egy 

DD 
Egy 

Avg 

426 7.3 5.2 0.7 A 0.60 0.57 0.60 0.23 0.19 0.20 0.40 

22h 6.3 8.0 1.3 B 0.56 0.58 0.61 0.40 0.41 0.44 0.50 

22k 12.5 16.8 1.3 B 0.48 0.54 0.58 0.34 0.27 0.30 0.42 

052 9.0 10.4 1.2 C , 0.65 0.66 0.68 0.73 0.55 0.57 0.64 

061 8.2 11.0 1.3 C 0.59 0.62 0.65 0.65 0.50 0.53 0.59 

00b 15.7 24.8 1.6 C 0.60 0.61 0.63 0.68 0.47 0.50 0.58 

001 5.6 6.9 1.2 D 0.62 0.59 0.61 0.58 0.43 0.45 ass 
OOd 21.0 34.5 1.6 D 0.72 0.73 0.77 0.49 0.31 0.32 0.56 

22I 10.4 17.2 1.7 D 0.58 0.62 0.65 0.53 0.47 0.50 0.56 

22g 6.7 11.9 1.8 D 0.62 0.68 0.72 0.60 0.51 0.54 0.61 

431 17.7 32.5 13 E 0.63 0.65 0.67 0.70 0.50 0.51 0.61 

422 20.9 40.1 1.9 F 0.92 0.81 0.82 0.38 0.31 0.33 0.60 

400 13.8 30.7 2.2 G 0.83 0.81 0.83 0.53 0.61 0.65 0.71 

423 9.6 24.8 2.6 G 1.00 0.87 0.B7 0.43 0.50 0.55 0.70 

424 12.3 32.0 2.6 G 0.99 0.90 0.92 0.52 0.63 0.68 0.77 

00C 16.5 38.5 Z3 H 0.78 0.79 0.82 1.14 0.74 0.76 0.84 

051 8.3 23.1 2JB H 0.80 0.86 0.90 1.20 0.69 0.72 0.86 

060 8.7 24.8 2.9 H 0.76 0.77 0.79 0.97 0.66 0.69 0.77 

Avg   |     11.7 21.8 13 0.71 0.70 0.73 0.62 0.49 0.51 0.63 

Below we examine how this channel estimate can be incor- 
porated in the training and recognition problems. 

Training: When the state sequence is not given, then one 
can use the expectation-maximization (EM) algorithm [4] to 
jointly estimate the channel and the HMM parameters by 
maximizing at each iteration the objective function 

(eN,hN) = argmax   E{\ogp(Y, S\B,h)\Y, B0, ho} 
e,h 

(12) 
where 0o and ho are the parameters from the previous iteration, 
and Qx and h^ are the reestimated parameters. 

The solution to the maximization problem above is fairly 
complex, however, and the channel and model estimates can 
alternatively be obtained by an iterative procedure, where one 
alternates between obtaining estimates of the model parameters 
and the most likely state sequence, and using these estimates to 
compute the estimate for the stationär}' channel. Each iteration 
of the algorithm is therefore broken down into two steps: 

1) Using the previous channel estimate ho, reestimate the 
model parameters using a nested EM procedure: 

BN = argmax£{logp(Y, 5 | 6. h0) | Y. B0. h0}     (13) 
6 

where 5 denotes the most likely state sequence using 
the current model and channel estimate. 

2) Obtain a new channel estimate by maximizing the likeli- 
hood of the observations given the newly obtained model 
parameters 0/v 

h,v = argmax   p{Y | 0V. h). (14) 
h 

The EM procedure described in (13) guarantees that the 
likelihood will not decrease for a fixed channel estimate, that is 

logp(Y | 9N, h0) > \ogp{Y | Bo, h0). (15) 

For fixed HMM parameters, (14) also guarantees that the 
likelihood does not decrease 

logp(Y | 0K,h.v) > logp(Y | 8N,hQ). (16) 

Therefore, every combined iteration of (13) and (14) guaran- 
tees that the likelihood p(Y | 6. h) does not decrease. For 
simplicity, however, and if we assume that the most likely 
state sequence is dominant [5], we can replace (14) by 

h,v = argmax p(Y \S.9N,h) (17) 
h 

and the channel estimate above can be computed using (10). 
Recognition:    In recognition, we want to determine the 

most likely state sequence. This implies that we should jointly 
maximize over the state sequence and the channel 

max    p(Y,S\6,h) (18) 

and the maximization above can be performed by an alterna- 
tion between maximizing over the state sequence and over the 
channel estimate, which is similar to the training algorithm 
described in the previous section. 

To summarize, we presented algorithms that jointly estimate 
the HMM parameters and the channel during training, and the 
most likely state sequence and the channel during recognition. 
During training, we assume that the training data can be 
split into blocks and that the channel characteristics do not 
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TABLE II 
LISTING OF MICROPHONE TYPES IN DEVELOPMENT TEST SET 

MicType Microphone Description 

A Radio Shack Pro-Unidirectional Highball 33-984 

B Sony ECM-55 

C Sony ECM-50PS 

0 Crown PCC-160 Phase-Coherent Table-Top 

E Shure SM91 Unidirectional Condenser 

F AT&T 720 Handset with Speech over Local Telephone Lines 

G AT&T 720 Speaker Phone with Speech over Local Telephone Lines 

H Crown PZM-6FS Pressure Zone Table-Top 

vary with time within each block. These blocks can be either 
single utterances, or sessions with multiple utterances. A single 
estimate of the channel response in the cepstral domain is 
estimated for each block. The training algorithm alternates 
between estimating the channel response and using the new 
channel estimate to obtain refined estimates for the HMM 
parameters. Hence, the output distributions directly model the 
cspstrum of the clean signal. During recognition, an initial 
channel estimate based on a priori knowledge is used to obtain 
the most likely state sequence. This state sequence can then 
be used to refine the channel estimate using (10), and the 
procedure can be iterated. 

C. Experimental Results 

To compare both normalization algorithms presented in 
Section LT-A and Section II-B to the conventional CMN algo- 
rithm, we tested the algorithms using SRI's DECIPHER™ 
continuous speech recognition system [6], [7] on the 5,000- 
word alternate microphone task of the WSJ corpus. The 
system is configured with a six-feature front end that outputs 
12 cepstral coefficients, cepstral energy, and their first-and 
second-order differences. The cepstral features are computed 
from an FFT filterbank. We used genonic hidden Markov 
models that allow an arbitrary degree of Gaussian sharing 
across different HMM states as described in [6]. For fast 
experimentation, we used the progressive search framework 
[7]: An initial recognizer with a bigram language model 
outputs word lattices for all the utterances in the test set. 
These word lattices are then rescored using our channel 
normalization algorithms. The models were trained using the 
large-vocabulary WSJ corpus recorded with a close-talking 
Sennheiser microphone from male speakers. For testing we 
used a test set with simultaneous recordings. One channel 
contains speech recorded with the Sennheiser microphone, and 
the other channel was recorded using 8 different low-quality 
microphones and telephone handsets. There were 18 male 
speakers in the test set. Each speaker recorded 20 sentences, 
for a total of 360 sentences. In Table I. the different speakers 
are grouped by secondary microphone type. The secondary 
microphone types are listed in Table II. We first compared the 

• All product names used in this paper are the trademark of their respective 
holders. 

TABLE m 
WSJ 5K NVP DEVELOPMENT TEST SET WORD ERROR RATE 

Algorithm 
Sennheiser 
Microphone 

Other 
Microphone 

Cepstral Mean 
Removal 

14.5 22.8 

DFT Equalization 14.4 22.6 

TABLE IV 
CHANNEL EQUALIZATION RESULTS ON WSJ DEVELOPMENT TEST SET 

Algorithm 
Word Error Rate 

CMN 21.6 

Channel Estimation 21.4 

LDMN algorithm to the conventional CMN. In this experiment 
we used a tied-mixture HMM system, with all HMM states 
sharing the same mixture components. 

For each speaker, the word error rate3 is given in Table I for 
the Sennheiser channel as well as the secondary microphone 
channel (denoted "OMic" for "other microphone"). The ratio 
of these word-error rates is shown in the fourth column. 
The normalized mean-squared error distortion between the 
Sennheiser and the secondary microphone features was com- 
puted for each of the six features. They are listed in subsequent 
columns, followed by an average of all six distortions. Note 
that the word-error rate and the average distortion are fairly 
constant across speakers for a given OMic condition. The 
results, presented in Table III, show that CMN is as effective 
as the LDMN equalization algorithm. To explain this result, 
we can either assume that the variation of convolutional noise 
within a spectral band is negligible, or that there are other 
factors that swamp its effects on recognition performance. 

In a second experiment, we compared the joint channel and 
model estimation algorithm to CMN on the same database. The 
joint channel/model estimation algorithm was implemented 
as follows. At each iteration during training, the most likely 

3 The average word error rate in Table I is slightly different than the one 
shown in Table III because each has been computed with different training 
procedures. 
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TABLE V 
INTER-SPEAKER VARIANCE OF THE CEPSTRAL MEAN MEASUREMENTS AS A PERCENTAGE OF THE TOTAL VARIANCE 

cl c2 c3 c4 c5 c6 c7 c8 c9 clO ell c!2 

71.4 79.8 60.1 70.8 49.5 71.4 53.5 78.0 68.0 51.1 25.1 57.9 

state sequence was estimated for each utterance in the training 
set. Equalization was performed in the cepstral domain: A 
separate estimate of the channel response was obtained for 
each utterance using (10), and subsequently subtracted ffom 
the cepstral vectors. Compensation was followed by an it- 
eration of the forward-backward algorithm. We computed a 
total of two iterations of the sequential EM algorithm during 
training. During recognition, an initial estimate of the channel 
was obtained using CMN. The most likely state sequence 
was obtained from the Viterbi alignment of a first recognition 
pass, and a more accurate estimate of the channel response 
was found using (10). A second recognition pass was then 
performed after subtracting the new channel estimate from the 
cepstral vectors. 

The results are summarized in Table IV. In this experiment 
we used a phonetically-tied mixture system—that is, it had 
a smaller degree of mixture sharing than the tied-mixture 
system used in the first experiment. In this system, all context- 
dependent models with the same center phone use the same 
mixture components in their output distributions. Despite the 
serious channel mismatch between the Sennheiser recordings 
and the secondary-microphone recordings in the WSJ corpus, 
the results were essentially the same (21.6% with CMN and 
21.4% with the proposed channel estimation algorithm). This 
indicates that the underlying assumption that (l/A^)Sxn is 
independent of the sequence of distributions that generated 
x„ is fairly accurate for these long sentences (~8 seconds). 

To test this hypothesis, we must compare for each speaker 
and channel the variation in the measurements of (l/iV)Exn 

when the transcription is fixed to the variation in the mea- 
surements of the same quantity when the transcription varies. 
To perform this comparison, we have to collect multiple 
recordings of each transcription for each speaker/channel com- 
bination. Assuming that the channel characteristics do not vary 
over the different recordings for a particular speaker/channel 
combination, we can then measure the cepstral mean for each 
sentence and group these measurements into sets based on the 
sentence transcription. Our hypothesis is then equivalent to the 
hypothesis that for each speaker/channel the averages of the 
cepstral mean values of the different groups are equal. 

Since we did not have data to test this hypothesis directly, 
we measured the cepstral mean values for all 360 sentences 
in the test set. The variability in these measurements consists 
of two terms: the variability in the speaker/channel-dependent 
measurement of the channel h and the variability in the 
measurement of (l/N)Lxn (see (8)). Assuming that the 
channel characteristics do not vary during the 20-sentence 
section of each of the 18 speakers, then we can estimate 
each one of these two sources of variability by comparing 
the variance of the cepstral mean measurements within each 
20-sentence section to the total variance. The results of these 

TABLE VI 
PARAMETERS USED IN THE HIGH-QUALITY (HQ) 

AND TELEPHONE-QUALITY (TQ) FRONT ENDS 

Parameter HQ TQ 
Sampling Rate 16 kHz 8kHz 

Number of tt1 
Coefficients 

256 128 

Number of Cepstral 
Coefficients 

12 8 

Number of Filters 25 18 
Total Bandwidth 100-6400 Hz 300-3000 Hz 

measurements for all 12 cepstral coefficients are presented in 
Table V, where we show the inter-speaker squared error as 
a percentage of the total squared error. We can see that the 
inter-speaker variance represents the larger amount of the total 
variance for most cepstral coefficients. 

This result agrees with our experimental finding that for 
the long WSJ sentences a satisfactory estimate of the channel 
can be obtained using CMN. Hence, we decided to perform 
an additional experiment to investigate the effect that the 
length of the interval used to obtain the channel estimate has 
on the accuracy of the estimate. As usual, we assumed that 
the channel does not vary within each speaker's 20-sentence 
section. Under this assumption, we can accurately estimate 
the channel response in the cepstral domain by computing the 
average of each cepstral coefficient over the whole 20-sentence 
section. We can then use this channel estimate to compute the 
average error in the less accurate channel estimates that are 
obtained using shorter intervals. In Fig. 1 we have plotted 
the error in the channel estimate as a percentage of the total 
variance of the corresponding cepstral coefficient and as a 
function of the estimation interval's length. The plots are 
averaged over all the intervals, sentences and speakers. We can 
see that, for an estimation interval of 8 seconds, the estimation 
error is small, and varies from 1.2% to 4.8% for different 
cepstral coefficients. The average estimation error over all 
cepstral coefficients for 8-second long intervals is 2.5%. 

III. TRAINING ISSUES 

A. Construction of Telephone-Bandwidth Acoustic Models 

Our objective is to train an HMM recognizer for over 
the telephone (OTP) applications without collecting specific 
training data for each task. For example, we would like to use 
available large speech corpora recorded with high-quality (HQ) 
microphones instead of collecting data over the telephone 
network. Here we show that the variability in the acoustics 
of the telephone quality (TQ) recordings has little impact on 
performance as long as: 1) cepstral mean normalization is used 
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Fig. 1.   Average error in the channel estimate (as a percentage of the total variance) as a function of the estimation interval (in seconds) for cepstral 
coefficients Cl  through C8. 

to compensate for channel variations, and 2) the signal analysis 
matches the spectrum of the telephone channel. 

To avoid collecting new training data for a task in which 
there is a mismatch between training and test conditions, there 
are a number of possible approaches: 

• Design robust features that are not affected by the vari- 
ations in the microphone, background noise, channel 
distortion, and so forth. 

• Adapt the parameters of the acoustic models. 
• Map features between the test and train acoustic spaces. 

This means that we make the data used for testing look 
like the data used for training. 

We will focus on the design of robust features for OTP 
applications by using a standard filterbank-based front end [8] 
tuned for telephone-bandwidth applications. In Table VI we 
show the parameters used in our wide-bandwidth (HQ) and 
telephone-bandwidth (TQ) front ends.4 The main difference in 
the signal analysis stage is the total bandwidth of the filterbank. 
Both front-end signal processing modules produce six feature 
streams: cepstral energy (CO), cepstrum, and their first-and 

4 We shall use HQ/TQ to denote both the high-/telephone-quality data and 
the wide-Aelephone-bandwidth front end, respectively. 

second-order differences. The mean of each cepstral coefficient 
is removed on a per-sentence basis. 

B. Experimental Results on the ATIS Corpus 

We have considered some of the approaches mentioned in 
Section III-A in the past [9], [10] and found that an adequate 
front end can minimize the mismatch between the acoustic 
spaces. In fact, in a pilot study conducted at SRI [9], we found 
that the variability introduced by the telephone handsets had 
little effect on recognition performance. 

For our pilot study, we collected a corpus of both training 
and testing speech using simultaneous recordings made from 
subjects wearing a Sennheiser HMD 414 microphone and 
holding a telephone handset. The speech from the handset was 
sent over local telephone lines. Ten different handsets were 
used by 13 male subjects (10 for training and three for testing) 
who read ATIS (Air Travel Information System) sentences 
[11]. The selected telephones included three carbon button, 
two inexpensive Radio Shack, and a variety of telephones 
found in our lab. The amount of data was 3,000 sentences 
for training and 400 sentences for testing. 

Table VII shows the results for different training and testing 
conditions. When the models are trained with HQ data and 
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TABLE VII 
EFFECT OF DIFFERENT TRAINING AND SIGNAL PROCESSING ON TEST SET PERFORMANCE 

Acoustic Model Training 

Test Set 

Word Error (%) 

Training 
Data Signal Processing 

Sennheiser 
(HQ data) 

Telephone 
(TQ data) 

Sennheiser 
(HQ) 

High-Quality Front End 7.8 19.4 

Sennheiser 
(HQ) 

Telephone Front End 9.0 9.7 

Telephone (TQ) Telephone Front End 10.0 10.3 

Sennheiser 
(HQ) 

Telephone Front End 

without Cepstrai-Mean 
Normalization 

9.4 11.2 

the HQ front end is used to generate the features we get the 
best possible result in the train HQ/test HQ condition (7.8% 
word error rate) and the worst result when we test on the 
TQ data (19.4%). This shows how the error is doubled due 
to the mismatch in the higher frequencies of the spectrum. 
The difference in error rate between the test HQ and test TQ 
conditions is greatly reduced when the TQ front end is used 
(9.0% and 9.7% error, respectively). Here the robustness of the 
recognizer is increased at the expense of performance in the 
HQ test condition. The next line in the table shows that training 
the models with TQ data actually degrades performance even 
for the TQ test condition (10.0% and 10.3% for HQ test 
and TQ test conditions). This is an important result since it 
indicates that we can train TQ models using HQ data with no 
degradation in performance. This is no longer true when we 
eliminate the cepstral-mean normalization (CMN) algorithm 
[2], as shown in the last line of the table. This degradatioa in 
performance is caused by the stationary convolutional noise 
(9.4% and 11.2% for HQ test and TQ test conditions when 
CMN is not used). 

In summary, we can train the recognizer models using a 
telephone bandwidth front end and high-quality training data. 
The drawback of the method, however, is that separate models 
have to be trained for HQ and TQ applications. Another 
limitation of this experiment is that all the telephone data were 
recorded using the same local telephone line. Therefore, we 
cannot predict from these experiments on a small stereo speech 
corpus how the variability of a wider telephone network will 
affect the recognition performance. For this reason, we test 
telephone models trained with HQ data on a more realistic 
database: the Switchboard speech corpus. 

C. Experimental Results on the Switchboard Corpus 

In this experiment we also show how to train HMM 
models for OTP applications using a HQ database and how 
they compare to models trained with TQ data. The test is 
performed on the Credit-Card (CC) task that is part of the 
Switchboard [12] speech corpus, a large speech database 
recorded over the public telephone network. For training 
we use the WSJ database that was recorded using high- 

quality Sennheiser microphones. The CC corpus consists of 
spontaneous telephone conversations between two individuals 
talking about issues related to credit cards. In contrast, the WSJ 
corpus was recorded from subjects reading sentences extracted 
from the Wall Street Journal newspaper. 

To test our ideas on the CC task we decided to train the 
acoustic models using 7000 WSJ sentences. For the CC task, 
training the models with WSJ data presents mismatches along 
a number of dimensions, which include: 

• Acoustics of recording (high-quality versus telephone) 
• Vocabulary independence (WSJ does not have the same 

focus as the credit card conversations) 
• Amount of training data (WSJ has 7000 training sen- 

tences, CC has 1000) 
• Speaking modes (read versus spontaneous speech) 
We ran the recognition experiments using SRI's 

DECIPHER™ phonetically-tied mixture system with a 
TQ front end. All the recognition experiments are gender- 
dependent, use a bigram grammar, and are expressed in 
terms of word error rate. The test consisted of 167 sentences. 
The results are summarized in Table VIII. In the baseline 
experiment, where we trained and tested the models using CC 
data, the error rate was 68%. The cross-database experiment 
yielded a slightly higher error of 71.5%. We also tested 
the VKSy-trained models with a noisy version of the test set 
(nCC). The data was corrupted with mid-continental US voice 
channel effects and highway noise recorded in the interior of 
a Ford Taurus on the highway. The average signal-to-noise 
ratio after adding the noise was 20 dB. The error for the 
nCC test set was 78.9%. 

To improve performance in the cross-database experiment, 
we adapted the distributions of the HMM using the CC 
train set. To adapt the models we reestimated the parameters 
of the Gaussian distributions (means and variances) using 
the forward-backward algorithm [13]. The mixture weights 
and state transition probabilities remained unchanged. This 
approach reduced the error to 69.7%. Finally, we ran two 
additional iterations of the forward-backward algorithm on the 
WSJ-minsd models using the CC train set. This run produced 
the best result of 67.1% error rate. 
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TABLE VIII 
SUMMARY OF CROSS-DATABASE ACOUSTIC 

TRAINING RESULTS ON THE CREDIT CARD TASK 

Description of the Experiment 
Train 
Data 

Test 
Data 

Word 
Error 
(%) 

Baseline CC CC 68.1 

Cross-Database WSJ CC 71.5 

Cross-Database in Noisy Data WSJ nCC 78.9 

Adaptation of WSJ Gaussian Mixtures wsj/cc CC 69.7 

CC Booted from WSJ Models WSJ/CC CC 67.1 

The cross-database results are very close to the baseline 
despite the mismatches between the two databases. Based on 
previous experiments, we believe that the difference in the 
results is more likely to be caused by mismatches in speaking 
modes and vocabulary than in the acoustics of the recording 
environment. 

IV. SUMMARY 

To compensate for channel and microphone mismatch we 
investigated the validity of two simplifying assumptions of 
the popular cepstral-mean normalization algorithm. To re- 
move these assumptions, we introduced two new channel 
normalization algorithms. Our experimental results showed 
that on the WSJ alternate-microphone task the cepstral-mean 
normalization algorithm was as effective as the proposed 
channel normalization algorithms. 

We also presented our approach to developing acoustic 
models for telephone applications. We showed that we can take 
advantage of existing, "high-quality" data and achieve simi- 
lar performance with cross-database training to that obtained 
using task-dependent training. 
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ABSTRACT 

The performance and robustness of a speech recognition system 
can be improved by adapting the speech models to the speaker, 
the channel and the task. In continuous mixture-density hidden 
Markov models the number of component densities is typically 
very large, and it may not be feasible to acquire a large amount 
of adaptation data for robust maximum-likelihood estimates. To 
solve this problem, we propose a constrained estimation tech- 
nique for Gaussian mixture densities, and combine it with Baye- 
sian techniques to improve its asymptotic properties. We 
evaluate our algorithms on the large-vocabulary Wall Street 
Journal corpus for nonnative speakers of American English. The 
recognition error rate is comparable to the speaker-independent 
accuracy achieved for native speakers. 

1. INTRODUCTION 
Two families of adaptation schemes have been proposed in 

the past. One transforms the speaker's feature space to "match" 
the space of the training population [1],[2],[3]. The transforma- 
tion can be applied either directly to the features, or to the speech 
models [4]. This approach has the advantage of simplicity and, if 
the number of free parameters is small, then transformation tech- 
niques adapt to the user with only a small amount of adaptation 
speech (quick adaptation). Disadvantages of transformation 
methods are that they are usually text-dependent and that they 
may not take full advantage of large amounts of adaptation data. 
The second main family of adaptation algorithms follows a 
Bayesian approach, where the speaker-independent information 
is encapsulated in the prior distributions [5][6]. The Bayesian 
approach is text-independent, and has nice asymptotic proper- 
ties: speaker-adaptive performance will converge to speaker- 
dependent performance as the amount of adaptation speech 
increases. However, the adaptation rate is usually slow. 

In this paper we present adaptation schemes that combine 
the quick adaptation characteristics of transformation-based 
methods with the nice asymptotic properties of Bayesian meth- 
ods. We first introduce a transformation-based method for con- 
tinuous mixture-density hidden Markov models (HMMs). 
Adaptation is achieved via a transformation of the speaker-inde- 
pendent observation densities, and the transformation parameters 
are obtained using the maximum-likelihood (ML) criterion. The 
number of transformation parameters can be adjusted to achieve 
quick adaptation. We will then show how this algorithm can be 

combined with Bayesian techniques. The combined method 
adapts to a new speaker with small amounts of adaptation data, 
but also has nice asymptotic properties and takes full advantage 
of large amounts of adaptation data. 

2. TRANFORMATION-BASED ADAPTATION 

Transformation-based approaches to speaker adaptation 
are typically text-dependent and require the new speaker to 
record some predetermined sentences. These utterances are 
aligned to ones recorded by reference speakers, and mappings 
between the new-speaker and the reference-speaker acoustic 
spaces are obtained using regression techniques [2][3]. 

We have developed a novel transformation-based approach 
to speaker adaptation for continuous mixture-density HMMs [7]. 
We apply the transformation at the distribution level, instead of 
transforming the feature vectors directly, since we can then use 
the expectation-maximization (EM) algorithm [8] to estimate the 
transformation parameters by maximizing the likelihood of the 
adaptation data. Using this approach, we are not required to 
time-align the new- and reference-speaker data, and the transfor- 
mation parameters can be estimated using new-speaker data 
alone. Our scheme can also be viewed as a constrained estima- 
tion of Gaussian mixtures, since we apply the same transforma- 
tion to all the components of a particular mixture (or a group of 
mixtures, if there is tying of transformations) instead of indepen- 
dently reestimating them. It achieves quick adaptation by adapt- 
ing Gaussians for which there were no observations in the 
training data, based on data that were most likely generated by 
other Gaussians of the same or neighboring mixtures. 

Specifically, we assume that the speaker-independent (SI) 
HMM model for the SI vector process [yf] has observation 
densities of the form 

Pub,' °t) = 5> (»,-' *,)* bv *V V   -   w 
i 

where g is the index of the Gaussian codebook used by state st. 
Adaptation of this system can be achieved by jointly transform- 
ing all the Gaussians of each mixture. We assume that, given the 
HMM state index st, the speaker-dependent vector process 
[xf] can be obtained by an underlying process [y,] through 

the transformation 
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Under this assumption, the speaker-adapted (SA) observa- 
tion densities will have the form 

■PSA(*W = X^iW*^+vv-ArJ (3) 
i 

and only the parameters Ag, bg, g = l,...,Ng need to be esti- 
mated during adaptation, where Ng is the number of distinct 
transformations. The same transformations can be applied to 
different HMM states, and this tying of transformations can be 
used to optimize performance based on the amount of available 
adaptation data. The transformation parameters can be estimated 
using the EM algorithm. The reestimation formulae are derived 
in [7] and are summarized below: 

1. Initialize all transformations with 
Af(0) =I,bg(0) =0,g = l,...,N.Setk=0. 

2. E-step: Perform one iteration of the forward-backward algo- 
rithm on the speech data, using Gaussians transformed with 
the current value of the transformations Ag (k), bg (k) . For 
all component Gaussians and all mixtures g, collect the suffi- 
cient statistics 

,gt,s, 

lgt,s, 

B«,,BXT'(5')^('') 

(4) 

t,s, 

where y (s)   is the probability of being at state st at time t 
given the current HMM parameters, the summation is over 
all times and HMM states that share the same mixture com- 
ponents, and  tyit(st)   is the posterior probability 

♦,-,(*,) =p(ai\A(k),bg(k),xest) (5) 

3.   M-step: Compute the new transformation parameters. Under 
the assumption of diagonal covariance and transformation 
matrices, the elements a and b of   A (k + 1), b (k + 1) 
can be obtained by solving the following equations for each g 

b = 
, n.p. 

»X5 
ab 

(6) 
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where for simplicity we have dropped the dependence on g. 
The variables \i-, O-, p, 0 are elements of the vectors 
and diagonal matrices (i. , lig, p,ig, lig, respectively. 

4.   If the convergence criterion is not met, go to step 2. 

Once the transformation parameters are determined, the 
constrained ML estimates for the means and covariances can be 
obtained using 

CML 
»ig + bg 

(7) 

3. COMBINED TRANSFORMATION AND 
BAYESIAN-BASED ADAPTATION 

In Bayesian adaptation techniques the limited amount of 
adaptation data is optimally combined with the prior knowledge. 
With the appropriate choice of the prior distributions, the maxi- 
mum a posteriori (MAP) estimates for the means and covari- 
ances of HMMs with Gaussian observation densities can be 
obtained using linear combinations of the speaker-dependent suf- 
ficient statistics (counts) and some quantities that depend on the 
parameters of the prior distributions [5][6]. Based on the reesti- 
mation formulae for the MAP estimates of the means and covari- 
ances of HMM with continuous mixture densities that are 
derived in [6], a simplified version of Bayesian estimation can be 
implemented by linearly combining the speaker-independent and 
the speaker-dependent counts for each component density 

X SA T SI TSD 

{xx )ig = X{xx )ig + (1 -X) {xx )ig 

SA       .SI     ,.     ..    SD 
nig =Xnig+(l-X)nig 

(8) 

where the superscripts denote the data over which the following 
statistics are collected during one iteration of the forward-back- 
ward algorithm 

<*>,* = XY'(s),f,i'(j)x< 
t,s 

t,s 
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We will refer to this method as approximate Bayesian adaptation. 
The weight X controls the adaptation rate. Using the combined 
counts, we can compute the approximate MAP (AMAP) esti- 
mates of the means and covariances of each Gaussian component 
density from 

SA 
AMAP _  (x)jg 
\ ~      SA 

j SA 
(10) 

^JMAP _   (XX )jg        AMApf   AMAPY 
\ SA ">g       \y~ig        ) 

% 



Similar adaptation schemes have also appeared for discrete 
HMMs [9], and can be used to adapt the mixture weights in the 
approximate Bayesian scheme described here. 

In Bayesian adaptation schemes, only the Gaussians of the 
speaker-independent models that are most likely to have gener- 
ated some of the adaptation data will be adapted to the speaker. 
These Gaussians may represent only a small fraction of the total 
number in continuous HMMs with a large number of Gaussians. 
On the other hand, as the amount of adaptation data increases, 
the speaker-dependent statistics will dominate the speaker-inde- 
pendent priors and Bayesian techniques will approach speaker- 
dependent performance. We should, therefore, aim for an adapta- 
tion scheme that retains the nice properties of Bayesian schemes 
for large amounts of adaptation data, and has improved perfor- 
mance for small amounts of adaptation data. We can achieve this 
by using our transformation-based adaptation as a preprocessing 
step to transform the speaker-independent models so that they 
better match the new speaker characteristics and improve the 
prior information in MAP estimation schemes. In the approxi- 
mate Bayesian adaptation, this can be accomplished by first 
transforming the speaker-independent counts using the method 
described in Section 2 and then combining them with the 
speaker-dependent counts collected using the adaptation data. 

4. EXPERIMENTAL RESULTS 

We evaluated our adaptation algorithms on the "spoke 3" 
task of the phase-1, large-vocabulary Wall Street Journal (WSJ) 
corpus [10], trying to improve recognition performance for non- 
native speakers of American English. Experiments were carried 
out using SRI's DECIPHER™ speech recognition system con- 
figured with a six-feature front end that outputs 12 cepstral coef- 
ficients, cepstral energy, and their first- and second-order 
differences. The cepstral features are computed from a fast Fou- 
rier transform (FFT) filterbank, and subsequent cepstral-mean 
normalization on a sentence basis is performed. We used genonic 
hidden Markov models with an arbitrary degree of Gaussian 
sharing across different HMM states as described in [11]. The 
speaker-independent continuous HMM systems that we used as 
seed models for adaptation were gender-dependent, trained on 
140 speakers and 17,000 sentences for each gender. Each of the 
two systems had 12,000 context-dependent phonetic models that 
shared 500 Gaussian codebooks with 32 Gaussian components 
per codebook. For fast experimentation, we used the progressive 
search framework [12]: an initial, speaker-independent recog- 
nizer with a bigram language model outputs word lattices for all 
the utterances in the test set. These word lattices are then res- 
cored using speaker-adapted models. We used the baseline 
5,000-word, closed-vocabulary bigram and trigram language 
models provided by the MIT Lincoln Laboratory. The trigram 
language model was implemented using the N-best rescoring 
paradigm, by rescoring the list of the N-best sentence hypotheses 
generated using the bigram language model. 

In the first series of experiments we used the bigram lan- 
guage model. We first evaluated the performance of the transfor- 
mation-based adaptation for various numbers of transformations 
and amounts of adaptation data. As we can see in Figure 1, 
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Figure 1: Word error rates for various numbers of 
transformations for the transformation-based adaptation 

where we have plotted the word error rate as a function of the 
number of adaptation sentences, multiple transformations out- 
perform very constrained schemes that use 1 or 2 transforma- 
tions. Trie performance with 20 and 40 transformations is 
similar, and is better than the less constrained case of 160 trans- 
formations. However, as the amount of adaptation data increases, 
the 160 transformations take advantage of the additional data and 
outperform the more constrained schemes. A significant decrease 
in error rate is obtained with as few as 5 adaptation sentences. 
When adapting using a single sentence, the performance is simi- 
lar for different numbers of transformations, except for the case 
of 2 transformations. The reason is that in our implementation a 
transformation is reestimated only if the number of observations 
is larger than a threshold; otherwise, we use a global transforma- 
tion estimated from all data. Since most of the transformations 
are backed off to the global transformation for the case of a sin- 
gle adaptation sentence, the cases with different numbers of 
transformations exhibit similar performance. 

In Figure 2 we compare the word error rates of the trans- 
formation-only method with 20 and 160 transformations, the 
approximate Bayesian method with conventional priors, and the 
combined method for various amounts of adaptation data. In the 
latter, the number of transformations was optimized according to 
the available amount of adaptation data. The transformation-only 
method with 20 transformations outperforms the Bayesian 
scheme with conventional priors when fewer than 10 sentences 
are used for adaptation, whereas the situation reverses as more 
adaptation sentences are used. This is consistent with our claim 
that transformation-based methods adapt faster, whereas Baye- 
sian schemes have better asymptotic properties. The perfor- 
mance of the transformation approach for large amounts of 
adaptation data can be improved by increasing the number of 
transformations. We can also see in the same figure the success 
of the combined method, which significantly outperforms the 
first two methods over the whole range of adaptation sentences 
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Figure 2: Word error rates for transformation-only, Bayesian- 
only, and combined schemes. 

that we examined. The transformation step provides quick adap- 
tation when few adaptation sentences are used, and the Bayesian 
reestimation step improves the asymptotic performance. 

Finally, we evaluated the word error rate of our best-per- 
forming configuration on the 1993 Spoke-3 development and 
evaluation sets, and the 1994 evaluation set of the WSJ corpus 
using a trigram language model. Our results for the 1993 test 
sets, presented in Table 1, represent the best reported results to 
date on this task [13]1. The speaker-independent word error rate 
for nonnative speakers is reduced by a factor of 2 using only 40 
adaptation sentences. Using 200 adaptation sentences, the 
speaker-adapted error rate of nonnative speakers is comparable 
to the native speaker-independent word error rate of the same 
recognition system which is 7.2% and 8.1% on the 1993 devel- 
opment and 1994 evaluation sets, respectively. 

Test Set 
Adaptation 
Sentences 

SIrate(%) SArate(%) 

Dev. 93 40 23.5 10.3 

Eval. 93 40 16.5 10.0 

Eval. 94 

40 

23.2 

11.3 

100 9.4 

200 8.2 

Table 1. Speaker Independent (SI) and Speaker Adapted (SA) 
word error rates on various test sets of nonnative speakers using 

different amounts of adaptation data. 

1. The 1994 official ARPA benchmark results were not 
available when this paper was written. 
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ABSTRACT 

This paper compares three techniques for recognizing continu- 
ous speech in the presence of additive car noise: 1) transforming 
the noisy acoustic features using a mapping algorithm. 2) adapta- 
tion of the Hidden Markov Models (HMMs), and 3) combination 
of mapping and adaptation. We show that at low signal-to-noise 
ratio (SNR) levels, compensating in the feature and model 
domains yields similar performance. We also show that adapting 
the HMMs with the mapped features produces the best perfor- 
mance. The algorithms were implemented using SRI's DECI- 
PHER™ speech recognition system [1-3] and were tested on the 
1994 ARPA-sponsored CSR evaluation test spoke 10 [4]. 

1. INTRODUCTION 

There are several approaches that one can use to recognize 
speech in the presence of additive background noise. The algo- 
rithms that we present here attempt to make each of the major 
components robust to additive noise: (a) the front-end signal pro- 
cessing and (b) the statistical modeling. 

To make the signal processing robust to additive noise, we 
apply a technique called Probabilistic Optimum Filtering (POF) 
[5]. We have previously showed how this algorithm can be used 
to recognize narrowband speech recorded over the telephone 
using wideband HMMs, and how to map speech features 
obtained from a boom desktop microphone to features generated 
from a close talking microphone. In summary, our focus in 
developing POF was the problem of channel mismatches 
between training and testing conditions. 

The class of feature-transformation approaches have been 
used successfully by other researchers [6.7] to compensate for 
speech corrupted with additive noise. We extend these tech- 
niques by using the POF technique and combine it with the ideas 
in our earlier noise-robust work [8]. Specifically, we train many 
different POF filters for different conditions (e.g. different back- 
ground noise, different SNR levels). At runtime, we automati- 
cally select the most appropriate model. 

The POF model does not use any assumption about the 
underlying physical phenomena that corrupted the signal. How- 
ever, it requires stereo recordings of the clean and noisy speech 
to estimate its parameters. In the case of additive noise, it is 
straightforward to build an artificial stereo database when a sam- 

ple of the noise is available, just by adding the noise to the clean 
speech. 

One approach to make the statistical modeling robust to 
additive noise is Parallel Model Combination (PMQ [9]. PMC is 
used to adapt the HMM parameters in a very simple but effective 
manner and it has also been shown [10] that integrating PMC 
with a continuous spectral subtraction in the front end is benefi- 
cial at low SNRs. 

Our approach to robust statistical modeling is to use a 
model adaptation technique described in [11]. In this case, we 
apply a set of affine transformations to the Gaussian mixtures of 
the HMMs. Unlike POF, stereo data are not needed to estimate 
the adaptation parameters. The clean HMMs are adapted using 
an orthographically transcribed adaptation set that matches the 
noisy conditions. 

Finally, we investigate how both techniques (mapping and 
adaptation) perform when they are used together. That is, we 
enhance the noisy features using POF followed by the adaptation 
stage. In fact, at low SNRs this technique produces the best per- 
formance. 

2. COMPENSATION TECHNIQUES 

2.1. Feature Mapping 

The POF mapping algorithm is designed to estimate a 
clean feature vector by applying a set of weighted affine transfor- 
mations to the noisy feature vectors [5]. To estimate the POF 
transformation parameters, we need a stereo compensation set 
with simultaneous sequences of the clean and noisy feature vec- 
tors. The stereo data is created by adding noise to the clean data 
to obtain noisy data. The question arises as to what noise to add 
to the clean speech and how the transformation parameters are 
affected by the properties of the noise (spectrum and level). 
Three possible approaches are to (1) add many different types of 
noise to the training data and train a general mapping that will 
apply to all types of additive noise, (2) train many different map- 
pings for different noise spectra and SNR's, and select the best 
model at runtime, and (3) obtain a sample of the actual noise 
encountered in the field and build a specific mapping for these 
conditions at runtime. 



22. Model Adaptation 
In the feature-mapping approach clean features are esti- 

mated and the HMMs remain unchanged. In model adaptation, 
however, the opposite occurs: the noisy feature vectors are 
unchanged and the HMMs are adapted using a sample of the 
noisy speech data and its orthographic transcription. 

Adaptation of the HMMs is implemented using a con- 
strained estimation of the Gaussian mixtures [11]. In this algo- 
rithm, we estimate a set of affine transformations that are applied 
to the Gaussian distributions. The transformations can be either 
unique for each mixture of Gaussians or shared by different mix- 
tures. The total number of transformations is determined experi- 
mentally based on the amount of adaptation data. 

As in the mapping approach, the compensation set can be 
constructed using a variety of speakers and noises. To achieve 
good performance, however, the characteristics of the noise and 
the SNR in the adaptation set have to match the test conditions. 

2.3. Combination of Mapping and Adaptation 

The third approach adapts the HMMs using the mapped 
feature vectors. In this algorithm, the feature mapping transforms 
the noisy features to make them look like the clean features. 
Then, the HMMs are adapted to these mapped noisy features. 
Finally, at runtime, the POF mapping is applied to the noisy fea- 
tures and these features are recognized with the adapted HMMs. 

This approach might be particularly applicable at low 
SNRs where the mapped features may be significantly distorted, 
and the adaptation algorithm is not able to compensate the mod- 
els in the cepstral domain because of the highly nonlinear distor- 
tion introduced by the additive noise. 

3. EXPERIMENTS 
Section 3.1 compares the POF, the HMM adaptation, and 

the combined approach for various SNR levels. Section 3.2 sum- 
marizes the procedure used for the 1994 ARPA-sponsored 
benchmark tests on noisy channels. 

3.1. Comparison of Compensation Techniques 

We evaluated the noise compensation algorithms on the 
large vocabulary Wall Street Journal (WSJ) corpus [12]. The 
experiments were carried out using SRI's DECIPHER™ speech 
recognition system [1-3] configured with a six-feature front end: 
12 cepstral coefficients, cepstral energy, and their first- and sec- 
ond-order differences. We used genonic HMMs, as described in 
[1]; for rapid experimentation, we constrained the search using 
the Progressive Search Technique described in [2]. In the current 
section (Section 3.1) we used lattices created on the clean test set 
(before adding the noise) to constraint the recognition search, 
resulting in optimistic results. In the following section (Section 
3.2), we use a full search decoder, resulting in real error rates. 

The noisy data were created artificially in the lab by adding 
the scaled noise to the speech data. Eight minutes of car noise 
were recorded on a 1985 Honda Civic Station Wagon traveling at 
a steady speed of 55 m.p.h. with its windows closed. We used the 

same 8 minute sample of noise for training and testing. To create 
a noisy sentence (approximately 10 seconds of speech), we 
selected a continuous block of noise from the long noise record- 
ing at random. This block of noise was scaled to achieve a given 
SNR level and added to the speech data. For these experiments, 
we computed the SNR on the unfiltered waveform, and designate 
this as SNR_wav. 

Our main goal in this set of experiments was to compare 
the performance of the three proposed algorithms described in 
Section 2. However, to have a lower bound in the word error rate 
under noisy conditions, we also trained the genonic HMM recog- 
nizer from scratch using noisy training data at an SNR_wav of 6 
dB. Therefore, we have two baseline recognizers, one based on 
"clean" HMMs and the other with "noisy" HMMs. The training 
data set consisted of 18,000 WSJ sentences from 170 male 
speakers. A compensation set was created using a subset of 300 
sentences from the training set The test set consisted of 90 sen- 
tences from 4 speakers. 

Table 1 compares the performance for these systems. 
These results show that word error rate degrades from 11.1% for 
the clean/clean condition to 15.5% for the noisy/noisy condition. 
These baseline numbers will be used as a reference for the com- 
pensation algorithms. 

Test Clean Test Noisy 

Train Clean 11.1 22.2 

Train Noisy 40.4 15.5 
Table 1. Baseline word error rate in percent for clean and noisy 

conditions. The SNR_wav of the noisy data is 6 dB. 

Table 2 compares the performance of the three compensa- 
tion algorithms described in Section 2 and the baseline results. 

Train Test Error Rate (%) 

Clean Clean 11.1 

Noisy Noisy 15.5 

Clean Noisy 22.2 

Clean Noisy+POF 18.2 

Clean + Adaptation Noisy 20.1 

Clean + Adaptation Noisy+POF 16.8 
Table 2. Word error for baseline conditions and compensation 

algorithms. The SNR_wav of the noisy data is 6 dB. 

We found that the error rate for mapping is 18.2% and for adap- 
tation is 20.1%. In both cases we optimized each technique to 
maximize performance. For the combined approach, we found 
that adapting the HMM's to the mapped features reduced the 
error rate to 16.8%, only 8.4% ((16.8 -15.5) / 15.5) worse than 
the full training in noise condition. Figure 1, which illustrates 
how the compensation algorithms perform at various SNRs, 
clearly shows how the combined approach outperforms mapping 
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Figure 1: Word error rate vs SNR_wav for various compensation 
algorithms. 

and adaptation at low SNR_wav levels. For SNR_wav levels 
above 15 dB, the POF-only approach produces the best perfor- 
mance. 

All the previous experiments assume prior knowledge of 
the SNR level of the test data. This is not a serious assumption 
since we can always estimate the SNR at run-time and select the 
compensation models trained at a similar SNR. Table 3 shows 

Model 
SNR_wav 

[dB] 

Test SNR_wav levels [dB] 

0 3 6 9 12 15 18 inf 

0 23.5 21.4 21.7 24.0 29.2 36.1 47.3 90.6 

3 25.1 20.1 17.2 17.2 19.6 22.0 25.7 71.0 

6 26.6 20.8 16.8 15.0 15.1 16.5 18.2 45.8 

9 28.7 22.0 17.5 14.0 132 12.8 14.1 30.1 

12 30.7 22.7 18.2 13.9 Uli 12.8 12.6 21.9 

15 32.4 23.4 18.7 14.8 13.2 127 12.7 17.4 

18 36.4 25.1 192 16.0 13.6 12.4 12.6 14.7 

inf 42.6 30.2 22.2 18.9 15.9 14.5 13.3 m 
Table 3. Word error rate at various SNR_wav levels. Columns 

correspond to the test data SNR_wav and rows correspond to the 
SNR_wav used to compensate the clean models. 

performance for the combined approach (mapping + adaptation) 
for the cases in which the testing SNR level may not match the 
compensation SNR level. This experiment shows that a precise 
estimate of the SNR is not necessary since performance seems to 
degrade slowly as the mismatch between the model SNR and the 
test data SNR increases. 

In summary, front-end mapping and HMM adaptation can 
be combined to improve performance in a noisy channel at low 
SNR_wav levels. These conclusions are applied in the following 
section. 

3.2. ARPA-Sponsored Benchmark Test (Spoke 10) 

3.2.1. Development Test Results 

This section describes the procedure used for the 1994 
ARPA-sponsored CSR evaluation spoke 10 test. The test con- 
sisted of WSJ data (5,000-word vocabulary) corrupted with addi- 
tive noise collected in three different cars. The car noise was 
recorded in an automobile traveling at 55 m.p.h. with all win- 
dows closed and the air-conditioning turned on, with an omnidi- 
rectional microphone clipped to the drivers' side sun visor. A 
one-minute sample of noise, preceding the noise segment added 
to the speech and scaled to each SNR level, is available for adap- 
tation. Three noisy test sets were created using the same clean 
utterances and several different noise levels. 

The results on the S10 development test set are shown 
below in Table 4. These experiments used a bigram language 
model on the male speaker subset (65 sentences) for car #1. The 
SNR's computed by NIST in the below table use an "A" fre- 
quency-weighted filter [13] before computing the SNR. Since car 
noise contains significant low frequency energies, applying a fre- 
quency weighted filter will shift the SNR levels compared to an 

•unweighted SNR computation on the waveform (SNR_wav). 

Experimental Condition 
1 2 3 4 

POF Compensation disabled enabled enabled enabled 

POF Feature 
39-D 
Cep 

13-D 
Cep+C0 

13-D 
Cep+C0 

POF#Gaussians 100 300 300 

POF # Frames 3 5 5 

Training Car Noises U.3 12,3 1 

Testing Condition 
(NIST SNR in dB) 

Word 
Error 

Word 
Error 

Word 
Error 

Word 
Error 

12 80.6 48.9 47.5 43.2 

18 53.2 29.8 29.0 26.5 

24 29.6 20.7 20.7 18.7 

30 19.0 15.9 18.1 15.8 

inf              |   12.8 

Table 4. Word error rates for various conditions on the 
development test (car 1) set using a bigram language model. 

The second line in Table 4 refers to what feature was used 
by the mapping. The # Gaussians and the # Frames are both 
parameters of the POF mapping algorithm. The fifth line in Table 
4 indicates which car noises the algorithms were trained on: 
experiments 2 & 3 trained on all 3 car noises (which includes 
noise from the same car as the development test set), while 
experiment 4 only trains on a sample of noise collected from the 
development test set car. The word-error rate's are computed for 
each condition as a function of the A-weighted SNR. 



From the results of Table 4, we see that 

When we train using a sample of the testing noise we get 
better performance than when we train on multiple car 
noises. 
Mapping the full 39-dimensional cepstral vector (cep + first 
and second order derivatives) seems to perform better at 
higher SNR's than mapping only the cepstrum and comput- 
ing the first and second derivatives on the mapped features. 
Condition 1 shows the performance with no compensation, 
and how the algorithms help more at higher SNR levels. 

3.2.2. Evaluation Test Results 

We trained many different POF mappings and HMM's. 
and selected the appropriate mapping at runtime. Using a one- 
minute sample of noise, we trained gender-dependent POF map- 
pings for many different SNR levels. The gender selection was 
done using a Bayesian classifier trained with noisy data at a 
medium SNR level. The SNR was computed using the average 
of the log spectral SNR computed at the output of the filterbank 
in the signal processing stage. (This produced SNRs higher than 
the ones computed in Section 3.1., and is denoted SNR_spec). 

To create the compensation models, the one-minute adap- 
tation noise was added to a subset of the WSJ training data con- 
sisting of 300 waveforms with a variable scale creating gender 
and SNR-specific compensation data sets. The 300 waveform 
compensation sets were used to train both the mapping and the 
adaptation parameters. At low SNR_spec levels (9-24 dB), we 
used the combined method (POF + Adaptation), and at high 
SNR_spec levels (27-33 dB) we used the POF mapping alone. 
The results of this test are shown in Table 5. For the worst condi- 

Compensation Clean Level 1 Level 2 Level 3 

Enabled - 10.1 8.8 12.5 

Disabled 7.1 18.7 Hi 35.0 
Table 5. Word error rates for the 1994 ARPA-sponsored 

evaluation on the Spoke 10 test. 

tion (Level 3) the ratio of the clean-speech error to the noisy- 
speech error was reduced roughly from 5 to 2 after applying the 
compensation algorithm. 

4. SUMMARY 

This paper describes how to compensate HMM-based rec- 
ognizers in the presence of steady additive noise. We compared 
performance of compensation algorithms that operate in the fea- 
ture and model domains, and experimentally found that both 
approaches produced improved results over the baseline condi- 
tion. A combination of mapping and adaptation, however, 
yielded the best results at low SNR levels. 
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